GPTune Users Guide*

Wissam M. Sid-Lakhdar Younghyun Chot James W. Demmel?
Hengrui Luo' Xiaoye S. Lif Yang Liu' Osni Marques’

April 13, 2021

Contents
(1__Introductionl 3
2 Installationl 6
[2.1 Installation using example scripts|o 6
2.2 Installation from scatchl o 7
[2.2.1 Python packages in the requirement file| 7
222 GPTune Cecodel o o 7
2.2.3 mpidpy| 7
[2.2.4 scikit-optimize| Lo 8
225 autotune 8
[2.2.6 GPTune Examples (SuperLU_DIST)| 8
2.3 Docker image|lo 8
2.4 Testing the mnstallation|. o 9
[3 GPTune Implementation| 9
3.1 Algorithms| e 9
[3.1.1 Single-objective autotuning| 9
[3.1.2 Multi-objective autotuning| oL 12
[3.1.3 Incorporation of performance models|. L. 13
[3.1.4 Transfer learning| 13
[3.2 Parallel implementations|. o oo 13
[3.2.1 Dynamic process management|{ 14
[3.2.2 Objective function evaluation|, 15

*This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration. We used resources of
the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231.

TLawrence Berkeley National Laboratory, MS 50A-3111, 1 Cyclotron Rd, Berkeley, CA 94720. (wis-

sam.sidlakhdar@gmail.com, hrluo@Ibl.gov, xsli@lbl.gov, liuyangzhuan@Ibl.gov, oamarques@Ilbl.gov)

fComputer Science Division, University of California, Berkeley, CA 94720. (younghyun@berkeley.edu, dem-

mel@cs.berkeley.edu).

8.2.3 Modeling phase of MLA| oo
[3.2.4 Search phase of MLA|
[3.3 History Databasel
3.3.1 Design|l.o

4__User Interfacel

4.1 Modity the application code| oo
4.2 Define the objective function to be minimized|
4.3 Define the performance models|o oo
4.4 Define the performance models update] 0oL
4.5 Edit the meta JSON file (from command line)|.
4.6 Read the meta JSONfilel o
[4.7 Define the tuning parameter, task parameter and output spaces|
4.8 Define the tuning problem| oo
4.9 Define the computation resource| Lo

4.13 Call multi-task learning algorithm (MLA)|
4.14 Call transfer learning algorithm (TLA)|.
[4.15 Call opentuner|
4.16 Call hpbandster|.
4.17 Invoke GPTune (from command line): default mode|
4.18 Invoke GPTune (from command line): RCImode]
4.19 GPTune options| e

Example code]

.1 ScaLAPACK QR] e
[5.1.1 Preparing the meta JSON filef
D.1.2 MLAL. . . . e
b.1.3 MLAFTLAl o e

.2 SuperLUDIST]
9.2.1 Preparing the meta JSON filef
(.22 MLAFTLAl e
[0.2.3 Muti-objective MLA|

(5.3 SuperLU_DIST (RCI)| e
[5.3.1 Preparing the meta JSON file| L.
15.3.2 Muti-objective MLA mn RCImode]

Numerical experiments|

6.1 Parallel speedups of GPTunel o
6.2 Advantage of using performance models| o000
6.3 Efficiency of multi-task learning|. oo 0oL
6.4 Capability of multi-objective tuning] L.

25
26
26
26
27
27
28
28
29
30
30
30
31
31
32
32
33
33
33
34

35
35
35
37
44
45
45
45
49
52
52
52

Abstract

GPTune is an autotuning framework that relies on multitask and transfer learning to help
solve an underlying black-box optimization problem. GPTune is part of the xXSDK4ECP project
supported by the Exascale Computing Project (ECP).

Multitask learning and transfer learning have proven to be useful in the field of machine
learning when additional knowledge is available to help a prediction task. We aim at deriving
methods following these paradigms for use in autotuning, where the goal is to find the best
parameters for optimal performance of an application treated as a black-box function.

We assume that evaluations are expensive, and so try to minimize the number of evaluations.

1 Introduction

The goal of autotuning is to automatically choose tuning parameters to optimize the performance of
an application. Performance is most often measured by runtime, but any quantitative, measurable
quantity is possible, such as the number of messages communicated, amount of memory used,
accuracy, etc. Autotuning is particularly challenging when the number of (combinations of) tuning
parameter values is large, the performance is a complicated and hard-to-model function of all the
tuning parameters, and running the application in order to measure the actual performance is
expensive.

GPTune addresses these autotuning challenges by using Bayesian optimization (Gaussian Pro-
cesses) to build a performance model (by running the application and measuring its performance at
a few carefully chosen tuning parameter values), and optimizing the model (eg choosing the tuning
parameters to minimize the runtime predicted by the model). In the simplest case, the user has a
single task ¢ (eg a linear algebra operation on a matrix of a certain size), the model f(z) predicts
the true runtime y(x) as a function of a tuning parameter x (eg a block size), and GPTune chooses
Z to minimize f(x).

GPTune goes beyond this simple case by providing both Multitask Learning Autotuning (MLA)
and Transfer Learning Autotuning (TLA). MLA means using performance data from multiple tasks
(eg a fixed linear algebra operation on matrices of several dimensions t1, %2, ..., %) to build a more
accurate performance model f(t,z) of the true runtime y(¢,x) to use for tuning (by choosing z
to minimize f(¢;,x), for any t;). In the common case that the performance varies reasonably
smoothly as a function of both ¢ and z, using all the available data to build f(¢,x) can make it
more accurate, and so better for tuning. Once a predicted optimal x.,; is chosen for a particular ¢;,
the application can be run to measure the actual performance for the values ¢t = t; and = xp, and
this data is used to update the model f(¢,z) to make it more accurate; this process of predicting
Zopt, Measuring the actual performance, and updating the model with the new x sample, can be
repeated a user-selected number of times.

TLA goes beyond MLA by using the performance model to predict (and optimize) the perfor-
mance for tasks (eg values of ¢) for which no true performance data has been collected. Here we
assume that a MLA performance model without using the performance data of these new tasks has
been built. The simplest way to do this is to use the same Gaussian Process approach used above to
build a model of z,p(t) = arg min,, f(¢, x), using the known (predicted) values of argmin, f(¢;, z)
from MLA. This requires no additional collection of actual performance data. Alternatively, TLA
can collect extra performance data for the new tasks, update (rather than rebuild) the MLA model,
and predict optimal x for the new tasks (future work).

To simplify the above description, we chose a simple example with one parameter () needed to
describe the task, and one tuning parameter (x). In practice, there may be many parameters needed
to describe the task, and many tuning parameters, which could be of different types (real, integer,
or “categorical”, i.e. a list of discrete possibilities, such as choices of algorithms). Therefore, our
interface (described in detail below) needs to accommodate all these possibilities.

We also need to accommodate constraints on the tuning parameters. For example, the user
may require that the number of processors used (a tuning parameter) be less than or equal to an
upper bound they supply, or that the product of the number of “processor rows” and the number
of “processor columns” be less than the same upper bound. Our interface accommodates these and
other possibilities.

If the measured performance data consists of multiple quantities, such as (runtime, accuracy),
then the user may want to perform multi-objective optimization. For example, in the case of
runtime and accuracy, which are likely to tradeoff against one another (faster runtime leading to
worse accuracy), then the user may want to compute the Pareto front of these two quantities.
Again, our interface accommodates this and other possibilities.

It is often the case that runtime data will be collected over time by one or more users running
many different cases of a popular application, so we want to take advantage of all this data to
improve the accuracy of our performance model while reducing the cost of expensive black-box
optimization. GPTune provides a history database that allows historical performance data to be
stored in files, and reused later. In addition, using a database allows check-pointing, and a more
flexible user interface. Moreover, to harness the power of crowd-tuning, we provide a public shared
database at https://gptune.lbl.gov, where users can store their performance data or download
the performance data provided by other users.

To make it easier for users to try different autotuners, since several are available or under
active development, our interface allows the user to invoke them as well. So far, OpenTuner [12],
HpBandSter [9] and ytopt [19] are supported.

It is sometimes the case that a user has a possibly coarse performance model that can be used to
help prune the search space, even if it is not very accurate. Our interface allows the user to submit
multiple models, for example just counting arithmetic operations, words communicated, etc., all of
which are incorporated in the model GPTune builds, and can help accelerate tuning.

To simplify notation, in the rest of this manual the phrase “task parameter” will refer to an
input, like ¢ above, that defines the task to be solved; there are generally multiple task parameters
needed to define a task. The phrase “tuning parameter” will refer to a parameter, like x above, that
the user wants to optimize; again there are generally multiple parameters to be tuned. The phrase
“parameter configuration” will refer to a tuple of a particular setting of the tuning parameters.
The word “output” will refer to the performance metric being optimized, such as time.

Table [I] summarizes the notations used in the manual. As an illustrative example, the QR
factorization routine of ScaLAPACK [5], denoted as PDGEQRF, is used as an application code
to be tuned assuming fixed numbers of compute nodes (nodes) and cores per node (cores). So
we list its respective parameters in this table. Note that only independent task and tuning pa-
rameters are listed here. Other parameters, such as the number of threads nthreads (used in
BLAS) and number of column processes ¢, can be calculated as nthreads = |cores/npernode| and
q = |nodes * npernode/p|. Note that we can use modified parameter definitions to better enforce
certain constraints. For example, assuming cores is power of 2, we can use a modified parameter
npernode’ such that npernode = 2mpernode’

https://gptune.lbl.gov

Symbol \ Interpretation
General notations

IS Task Parameter Input Space

PS Tuning Parameter Space (parameter configurations)
0s Output Space (e.g., runtime)

MS performance Model Space (e.g., flop count)
« dimension of IS

I3 dimension of PS

0% dimension of OS

0% dimension of MIS

0 (NI) number of tasks

¢ (NS, NS1) | number of samples per task

T € IS° array of tasks selected from sampling

X € PS°*¢ | array of samples (parameter configurations)

Y € 0S?*¢ | array of output results (e.g. runtime)
Example: parameters for ScaLAPACK PDGEQRF notations

= |m number of matrix rows
S | n number of matrix columns
mb row block size
%D nb column block size
£ | npernode number of MPI processes per compute node
& D number of row processes

Table 1: Notations. The symbols in the parentheses denote code notations.

At a higher level, we also need to distinguish two independent sets of parameters:

e The parameters associated with the application codes, as described above, i.e. task parameters
(as input to GPTune) and tuning parameters (as output from GPTune). Section shows
the API for the user to define these parameters.

e The parameters associated with the tuner itself, referred to as “GPTune parameters”. These
are related to the various tuning algorithms, such as MLA and TLA. Sections and
show the APIs for the user to choose the GPTune parameters. The settings of these
parameters can affect the speed and accuracy of the tuning algorithms.

We have parallelized the most time-consuming part of the GPTune algorithms. Section [3.2
describes the parallel programming model on multicore nodes using MPI and OpenMP. The user
can define the parallel computer configuration (nodes, cores) for GPTune’s internal computation.
The application to be tuned may also be executed in parallel, but GPTune and the objective
function may use different numbers of nodes and cores. Section [£.9] shows the API for the user to
specify the computer resources.

The rest of this user manual is organized as follows. Section [2] says how to install the system.
Section [3] describes the underlying autotuning algorithms and their implementation. Section [4]
describes the user interface. Section [f] shows examples of autotuning real applications. Section [0]
presents some performance results.

2 Installation

GPTune is implemented in Python and C, and it depends on several Python, Fortran and C
packages. Most of them can be installed with one line; the rest requires manual installation.
Before the installation, the following software environment is needed (with the required minimum
version number in parentheses): gcce(7.4.0) or intel icc(19.0.0), openmpi(4.0.1), python(3.7),
scalapack(2.1.0), git, cmake(3.19), blas, lapack. Note that OpenMPI, Python and ScaLAPACK
(shared build is recommended) should use the same gcc version. It might be necessary to build
them from source. We highly recommend modifying the example build scripts for known machines
for the correct installation of GPTune. Alternatively, a pre-built Docker image is also available if
the user wants to quickly try the functionality of GPTune.

2.1 Installation using example scripts

GPTune can be obtained from its Github repository:

1 git clone https://github.com/gptune/GPTune.git
2 cd GPTune

The following example build scripts are available for a collection of tested systems.

e Ubuntu/Debian-like systems supporting apt-get. The following script installs every-
thing from scratch and can take up to 2 hours depending on the users’ machine specifications.
If “MPIFromSource=0", you need to set PATH, LIBRARY_PATH, LD _LIBRARY_PATH and
MPI compiler wrappers when prompted.

bash config_cleanlinux.sh

e Mac OS supporting homebrew. The following script installs everything from scratch and
can take up to 2 hours depending on the users’ machine specifications. The user may need to
set pythonversion, gccversion, openblasversion, lapackversion on the top of the script to the
versions supported by your homebrew software.

-

zsh config_macbook.zsh

¢ NERSC Cori. The following script installs GPTune with mpi, python, compiler and cmake
modules on Cori. Note that you can set “proc=haswell or knl”, “mpi=openmpi or craympich”
and “compiler=gnu or intel”. Setting mpi=craympich will limit certain GPTune features.

Particularly, only the so-called reverse communication interface mode can be used, see Section
[3.2.2] for more details.

1 bash config_cori.sh

In all the examples scripts above, setting “BuildExample=0" will only install GPTune with a
Scalapack PDGEQRF tuning example. Otherwise, all tuning examples (Superlu_DIST, Hypre,
STRUMPACK, ButterflyPACK, MFEM) will be installed.

© 0 N O U W N

e e
= W N = O

e oW o e

2.2 Installation from scatch

Instead of using the example build scripts, the users can choose to install GPTune step-by-step.
The following installs GPTune on a Linux system with gcc compiler, without installing most of the
tuning examples.

Obtain GPTune from github.

git clone https://github.com/gptune/GPTune.git
cd GPTune
export GPROOT=$PWD

Set the following environment variables makes it convenient for consequent installation.

export PYTHONWARNINGS=ignore

export CCC=path-to-the-mpicc-wrapper

export CCCPP=path-to-the-mpic++-wrapper

export FTN=path-to-the-mpif90-wrapper

export RUN=path-to-the-mpirun-wrapper

export BLAS_LIB=path-to-the-blas-1ib

export LAPACK_LIB=path-to-the-lapack-1ib
export SCALAPACK_LIB=path-to-the-scalapack-1lib

2.2.1 Python packages in the requirement file

The following python packages listed in requirement.txt can be installed automatically with pip:
numpy, joblib, scikit-learn, scipy, pyaml, matplotlib, GPy, openturns, lhsmdu, pygmo,
ipyparallel, opentuner, hpbandster, filelock.

pip install --upgrade --user -r requirements.txt

2.2.2 GPTune C code

cd $GPROOT

mkdir -p build

cd build

cmake .. \

-DBUILD_SHARED_LIBS=0N \
-DCMAKE_CXX_COMPILER=$CCCPP \
-DCMAKE_C_COMPILER=$CCC \
-DCMAKE_Fortran_COMPILER=$FTN \
-DTPL_BLAS_LIBRARIES=$BLAS_LIB\
-DTPL_LAPACK_LIBRARIES=$LAPACK_LIB \
-DTPL_SCALAPACK_LIBRARIES=$SCALAPACK_LIB
make

cp lib_gptuneclcm.so ../.

cp pdqrdriver ../

2.2.3 mpidpy

cd $GPROOT

rm -rf mpiédpy

git clone https://github.com/mpid4py/mpidpy.git
cd mpidpy/

[N

(=]

s W oo =

ot

© 00 N 3 U R W N

e e e e
N o s W = O

python setup.py build --mpicc="$CCC -shared"
python setup.py install
export PYTHONPATH=$YTHONPATH:$GPROOT/mpidpy/

2.2.4 scikit-optimize

cd $GPROOT

rm -rf scikit-optimize

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize/

python setup.py build

python setup.py install --user

2.2.5 autotune

cd $GPROOT

rm -rf autotune

git clone https://github.com/ytopt-team/autotune.git
cd autotune/

cp ../patches/autotune/problem.py autotune/.

pip install --user -e

export PYTHONPATH=$YTHONPATH:$GPROOT/autotune/

2.2.6 GPTune Examples (SuperLU_DIST)

cd $GPRO0T/examples/SuperLU_DIST

git clone https://github.com/xiaoyeli/superlu_dist.git
cd superlu_dist

mkdir -p build

cd build

cmake .. \

-DCMAKE_CXX_FLAGS="-0fast -std=c++11 -DAdd_ -DRELEASE" \
-DCMAKE_C_FLAGS="-std=c11 -DPRNTlevel=0 -DPROFlevel=0 -DDEBUGlevel=0" \
-DBUILD_SHARED_LIBS=0FF \

-DCMAKE_CXX_COMPILER=$CCCPP \

-DCMAKE_C_COMPILER=$CCC \

-DCMAKE _Fortran_COMPILER=$FTN \
-DTPL_BLAS_LIBRARIES=$BLAS_LIB \
-DTPL_LAPACK_LIBRARIES=$LAPACK_LIB \
-DTPL_PARMETIS_INCLUDE_DIRS=path-to-parmetis-include \
-DTPL_PARMETIS_LIBRARIES=path-to-parmetis-1lib

make pddrive_spawn

2.3 Docker image

If the users don’t want to install GPTune, a Docker image is availabe for all system types: Linux,
Mac or Windows. First install and launch docker following instructions at https://docs.docker.com.
The docker image can be then obtained and launched by

docker pull liuyangzhuan/gptune:2.4
docker run -it liuyangzhuan/gptune:2.4

2.4 Testing the installation

Either of the following two scripts can be tested

bash run_examples.sh # uncomment corresponding code blocks to activate certain
tests

bash run_ppopp.sh # edit line 188 accordingly to activiate certain tests (see
comments inside)

Note: if GPTune was installed using config_cleanlinux.sh or the Docker image is loaded, uncomment
lines 34-38; if GPTune was installed using config_macbook.zsh, uncomment lines 11-15; if GPTune
was installed using config_cori.sh, edit lines 18-22 accordingly.

3 GPTune Implementation

In this section, we describe how GPTune is implemented, with sufficient details of the tuning algo-
rithm so that the user knows how to set GPTune’s learning algorithm parameters (see Sections m
and and other options (see Section [£.19). We refer the users to our technical paper [18] for a
thorough exposition of the methodology.

3.1 Algorithms

We first describe the algorithm for single-objective autotuning, then describe the algorithm for
multi-objective autotuning.

3.1.1 Single-objective autotuning

Recall that we seek to optimize some objective function with a set of tunable parameters for
best performance, in the form of argmin, y(¢,z), where ¢ € IS is an input task and = € PS is a
tuning parameter configuration. IS is the Task Parameter Input Space containing all the input
problems that the application may encounter. Note: the word “input” will be dropped in the
remaining document. PS is the Tuning Parameter Space containing all the parameter configurations
to be optimized, with o being the number of task parameters and £ being the number of tuning
parameters. We also define OS to be the Output Space of dimension ~, i.e., the number of scalar
objective functions.

We can evaluate the objective function pointwise at a tuning parameter configuration (i.e., run
and measure the application on a parallel machine), but the function does not have an easy closed
form nor easy-to-compute gradients. Moreover it is expensive to perform a function evaluation.
Given these characteristics, we choose to use the Bayesian optimization method (also known as
Efficient Global Optimization (EGO) [13]), in which a prior belief model representing the assump-
tions on the objective function is chosen, and a posterior is built from it so as to maximize the
likelihood of some probability distribution function based on the sampled objective function values.

Compared to the other autotuning efforts, one of our innovations is to use multitask learning
to build a more accurate predictive model. Multitask learning consists of learning several tasks
simultaneously (eg running a ScaLAPACK routine with different matrix dimensions) while sharing
common knowledge between them in order to improve the prediction accuracy of each task and/or
speed up the training process. We call this framework multitask learning autotuning (MLA).

Specifically, the MLA learning process consists of the following phases, where we also define
GPTune parameters, or provide names for other quantities that appear in the GPTune interface.

1. Sampling phase. There are two sampling steps. The first is to select a set T of § tasks
T = [t1;ta;...;ts] € IS?. The goal is to get a representative sample of the variety of problems
that the application may encounter, rather than focusing on a specific type of problem.
Alternatively, T' can represent a list of target tasks specified by the user, instead of sampling
done by GPTune.

The second sampling step is to select an initial set X = [X1; Xo;...; X;] of tuning parameter
configurations for every task. Let V.S denote a prescribed total number of function evaluations
per task. The number of initial samples is set to e = NS1, with NS1 = [NS/2] by default. For
task ¢;, its initial sampling X; consists of € tuning parameter configurations X; = [x; j];c1,q €
PS¢. Define X = [X1; Xy;...; Xs] € PS¢ to represent all the samples.

The samples z; j are evaluated through runs of the application, whose results, y; j = y(ti, z; ;) €
08, can be formed as Y; = [y; j]je1,q € OS°. The set Y = [Y1;Y2;...;Y5] € 0S°*€ represents
the results of all these evaluations.

GPTune parameters. NI: number of tasks (i.e., §). Note that we use NI as the code
notation and § as the algorithm notation. Igiven: (optional) list of user specified task pa-
rameters. NS: total number of function evaluations per task. NS1: (optional, default value
given above) number of initial function evaluations. The other related GPTune parameters
are: sample_class, sample_algo, sample_max1_iter, which are described in Section [£.19]

2. Modeling phase. This phase builds a Bayesian posterior probability distribution of the
objective function via training a model of the black-box objective function relative to the tasks
in T. We derive a single model that incorporates all the tasks, sharing the knowledge between
them to be able to better predict them all. To this end, we use the Linear Coregionalization
Model (LCM), which is a generalization of Gaussian Process (GP) in the multi-output setting.
A GP represents a probability model f(z) for the objective function y(x). It assumes that
(f(x1), ..., f(xe)) is jointly Gaussian, with mean function u(z) and covariance X (z,2') =
k(x,2"), where k is a positive definite kernel function. The idea is that if x and 2’ are deemed
similar by the kernel, we expect the outputs of the function at those points to be similar
too. A model f(x) following a GP is written as: f(z) ~ GP(u(x),X). In practice, p(z) is
initialized to be the zero function. The modeling is done through (X, X), by maximizing
the log-likelihood of the samples X with values Y on the GP. For single task learning, the size
of the covariance matrix (X, X) is € X e.

The key to LCM is the construction of an approximation of the covariance between the
different outputs of the model of every ¢; € T'. In this method, the relations between outputs
are expressed as linear combinations of independent latent random functions

Q
fltix) =) aiquq(@) (1)
q=1

where a; 4 (i € [1,0]) are hyperparameters to be learned, and u, are the latent functions, each
of which is an independent GP whose hyperparameters need to be learned as well.

10

Due to the independence of u,’s, the covariance between two outputs is simply the sum of
auto-covariances of u, at those two points:

cov(f (ti, @), f(ti,2') Z 7 qcov(ttg (), ug(z")) (2)

In LCM, we assume the covariance of the latent function is based on a Gaussian kernel:

Pz —)2
cov(ug(x), uq(a)) = kq(x,2') = o2 exp (-3 (lq>> @)

i=1 i

When considering all the tasks and all the samples together, the covariance matrix (X, X)
is of size ¢ - € with entries

Q
S (i, wi 1) = > _(@iqir g + bigdi i)kg(wig, wir jr) + did; 65 4 (4)
g=1

where 9; ; is the Kronecker delta function, b;, and d; are diagonal regularization param-
eters. The learning task in the nth MLA iteration is to find the best hyperparameters
of the model, such as the hyperparameters o,,[! in the Gaussian kernel Eq. and coef-
ficients a;q,d; in Eq. . We use a gradient-based optimization algorithm to maximize
the log-likelihood of the model on the data. Specifically, we employ the limited-memory
Broyden—Fletcher—Goldfarb—Shanno algorithm (L-BFGS) [I7] through the Python package
scikit-Optimize [3]. Note that the log-likelihood function is usually highly nonconvex, so lo-
cal optimization may not converge to the/a global optimum. The modeling phase extends
the Python package GPy [I1] to enable distributed-memory parallel modeling.

GPTune parameters. model latent: number of latent functions (i.e., Q). By default
@ = 0. The other relevant options are model _restarts, model_max_iters, etc. See Section
for details.

Algorithm 1 Bayesian optimization-based single-objective MLA

1:

Sampling phase: Compute y(t;,x), i < ¢ at NS1 initial random tuning parameter configura-
tions for § selected tasks. Set e = NS1.
while ¢ < NS do

Modeling phase: Update the hyperparameters in the LCM model of y(t;,), i < § using
all available data.

Search phase: Search for an optimizer z for the EI of task ¢;, « < 6. Let X* =
(27525 .. .5 a3

Compute y(t;,x), i < J at the new tuning parameter configurations X*.

e+ e+ 1.
end while
Return the optimum tuning parameter configurations and objective function values for each
task.

11

3. Search phase. Once the model has been updated, the objective function values at new

points X* = [z};3;...;25] can be predicted with posterior mean p, = [u]; p3;. .. ; 3] and
posterior variance (prediction confidence) o2 = [0{2; 03‘2; cel 0}‘2] as:
02 = N(X*, X*) - (X, X)B(X, X)'u(x*, x)T (6)

Note that the posterior variance is equal to the prior covariance minus a term that corre-
sponds to the variance removed by observing X [I0]. The mean and variance can be used to
construct the Expected Improvement (EI) acquisition function, which can be maximized in
order to choose a new point X* for function evaluation (additional sampling). We use evolu-
tionary algorithms provided by the python package PyGMO [2] to optimize the EI. PyGMO
supports many optimization algorithms. By default, we use Particle Swarm Optimization
(PSO) algorithm [15].

With one additional function evaluation, we increment € by 1 and move to next MLA iteration

for model improvement until € reaches a prescribed sample count NS (i.e., a prescribed budget
of function evaluations). This iterative process is summarized as Algorithm

GPTune parameters. search_algo: evolutionary algorithms supported by PyGMO. By
default search_algo is ‘pso’. The other relevant options are search_pop_size, search_gen,
search_evolve, search_max_iters, etc. See Section for details.

3.1.2 Multi-objective autotuning

The MLA algorithm described in Section can be easily extended to multi-objective, multi-
task settings. Algorithm [2| describes the multi-objective extension of Algorithm Let y*(t,x),
s < « denote the sth objective function. Algorithm [2] essentially builds one LCM model per
objective function y*(¢,z) in the modeling phase. In addition, the search phase relies on multi-
objective evolutionary algorithms such as non-dominated sorting generic algorithm II (NSGA-II)

7

to search for k new tuning parameter configurations in each iteration. The sorting is based on

the Pareto dominance and Crowding distance [7].

Algorithm 2 Bayesian optimization-based multi-objective MLA

1:

Sampling phase: Compute y*(¢;,z), i < d, s < v at NS1 initial random tuning parameter
configurations for § selected tasks. Set e = NS1.

2: while ¢ < NS do

Modeling phase: For each objective s < ~, update the hyperparameters in the LCM
model of y*(¢;,x), i < § using all available data.

Search phase: Search for k best tuning parameter configurations for the EI of task t;,
i < 0.

Compute y*(t;,z), i < J at the k new tuning parameter configurations.

€ e+ k.
end while
Return the optimum tuning parameter configurations and objective function values for each
task.

12

GPTune parameters. search_algo: evolutionary algorithms supported by PyGMO. By de-
fault search_algo is ‘nsga2’ (i.e., the NSGA-II algorithm). search_more_samples: the number of ad-
ditional samples per iteration (i.e., k). The other relevant options are search_pop_size, search_gen,
search_evolve, search_max_iters, etc. See Section for details.

3.1.3 Incorporation of performance models

A performance model refers to an analytical formula or inexpensive application run for any feature
(time, memory, communication volume, flop counts) of the objective function. For example, one
can provide an analytical formula for the flop count when the objective function is the runtime.
When available, performance models can be incorporated to build a more accurate LCM model
with fewer samples needed. In what follows, the performance model incorporation is explained
assuming single task 6 = 1 and single objective v = 1 for simplicity.

We define MS to be the performance Model Space with dimension 4 being the number of models.
Let g(z) denote the results of the performance models for parameter configuration x. Without the
performance model, entries of the LCM Kkernel matrix represents the nonlinear inner products
between points z and 2’ in the feature space PS of dimension 3. One can use the values 7(x)
as the extra features to construct an enriched feature space of dimension 8 4 4 consisting points
[z,7(z)]. Note that the enriched LCM matrix still has the same dimension €d x €§. Once the LCM
model is built, the objective function at the new point x* can still be predicted using and @
by replacing z* with [z*, 5(x*)].

Note that GPTune internally represents the tuning parameters x as real numbers in the unit
hypercube [0, 1]°. Therefore, it is beneficial that the §(z) can be normalized by the users to [0, 1]7.
For example, if the users know in advance that §(z) € [y;, yu] assuming 4 = 1, they can instead
return the output of the model as (z) = (g(x) —y1)/(yu —yi). We recommend the users to perform
such conversion even when y; and y, are approximate numbers, as this will help GPTune build a
more accurate LCM model.

3.1.4 Transfer learning

Transfer learning autotuning (TLA) focuses on the case where no true performance data has been
collected for a specified task t*, but rather performance data and models have been built for
different (but related) tasks ¢;,7 < 0. The simplest way to do this is to use the Gaussian Process
approach to build a model of z,y(t) = argmin, f(¢,z), using the known (predicted) values of
argmin,, f(¢;,x) from MLA. This requires no additional collection of actual performance data.
GPTune uses Algorithm [I] with § = 1 to build this model.

Alternatively, the model could be iteratively used to predict an optimal x, measure the perfor-
mance, and update the model. This is future work.

3.2 Parallel implementations

GPTune supports both shared-memory and distributed-memory parallelism through dynamic thread
and process management. Most parts of GPTune are implemented with Python3. The shared-
memory parallelism is supported through OpenMP threading or the subclass ThreadPoolExecutor
from the Python module concurrent.futures. The distributed-memory parallelism is supported
through the Python package mpidpy [I] and will be explained in detail.

13

3.2.1 Dynamic process management

In our design, only one MPI process can execute the GPTune driver, but it can also dynami-
cally create new groups of MPI processes (workers) to speed up the objective function evaluation,
modeling phase and search phase through the use of MPI spawning. To describe the spawning
mechanism, we recall that there are two kinds of MPI communicators, i.e. intra- and inter-
communicators. An intra-communicator consists of a group of processes and a communication
context, while an inter-communicator binds a communication context with two groups (local and
remote) of processes. The master process (running the GPTune driver) will call the function
“Spawn” in mpidpy to create a group of new processes. The master process is contained in the
intra-communicator “MPI_World” with only one process. The Spawn function will return an inter-
communicator “SpawnedComm” that contains a local group (the master itself) and a remote group
(containing the workers). The workers also have their own intra-communicator “MPI_World” and
call the mpidpy function “Get_parent” that returns an inter-communicator “ParentComm” that
contains a local group (the workers) and a remote group (the master). Data can be communicated
between the master and workers using the inter-communicators. This scheme can be conceptually
depicted in Fig.

Comm_World Comm_World

ParentComm

SpawnedCdmm

InterCommunicator O IntraCommunicator

Figure 1: GPTune parallel programming model.

A typical spawning call on the master process is

1 SpawnedComm = mpi4py.MPI.COMM_SELF.Spawn(executable, args, maxprocs,info)

Here, “maxprocs” is the number of new processes to be created, “executable” is the program to
be executed by the workers, “args” are the command line arguments to be passed to the program,
“info” are the environment variables to be passed to the program, and “SpawnedComm” is the
inter-communicator with the master as the local group.

A typical setup on the worker processes is

ParentComm = mpidpy.MPI.Comm.Get_parent ()

Here “ParentComm” is the inter-communicator with the workers as the local group. Note that
Get_parent can be called from C, C++ or Fortran application codes with a slightly different syntax.

In what follows, we describe the shared-memory and distributed-memory parallelism in the
objective function evaluation, modeling phase (in MLA), and search phase (in MLA) separately.
Parallel implementation of TLA is future work.

14

Python (1 MPI)
Spawn desired MPI/OMP combinition

Spawn at most € MPIs

Parallel over LCM

* Spawn at most 8 MPIs

Parallel over tasks

\/

(a) MPI spawning mode (b) RCI mode

Figure 2: Two execution modes of GPTune: (a) MPI spawning-based interface (the default) and
(b) reverse communication interface (RCI)

3.2.2 Objective function evaluation

GPTune provides two interfaces for objective function evaluation, i.e., the MPI spawning mode
(the default) and the reverse communication interface (RCI) mode.

For the default mode, the (MPI) application code needs to be compiled using the same software
dependence as GPTune (OpenMPI, scalapack, etc.), and with the insertion of a few extra lines (see
Section . This makes the application code callable from inside the GPTune Python modules
(see Figure [2] left).

On the other hand, the RCI mode doesn’t require OpenMPI-compiled application code and
requires a bash script to invoke GPTune and the application. More specifically, the bash script
will query GPTune (a Python driver) for next sample points, search for required samples in the
database, invoke the application code, write the evaluation results into the database, and then
call the GPTune python driver again to ask for next samples (see Figure [2| right). As such, the
parallelism of the objective function evaluation is completely handled in the bash script. The RCI
mode will be further explained in Section and The rest of Section only applies to
the default mode.

In the default mode, the users of GPTune will need to provide the objective function (see the
definition in Section that uses the task and tuning parameters to execute the application code.
There are two levels of parallelism supported: running a single objective function evaluation with
given MPI and thread counts, and running multiple objective function evaluations in parallel.

Running one function evaluation in parallel. For a single parallel objective function evalu-
ation, the MPI count can be passed to the application code using the argument “maxprocs”, the
thread count can be passed using the argument “info” as

1 info = mpi4py.MPI.Info.Create ()
2 info.Set('env', 'OMP_NUM_THREADS=%d\n' %(nthreads))

15

= W

© 0w N O«

10
11
12

e oW o e

where “nthreads” is the number of threads possibly contained in the task or tuning parameters. De-
pending on how the application code is implemented, one can pass the parameters using command
line (“args”), environment variables (“info”), or an input file stored on disc.

To collect the returning value(s) from the workers, one can choose to read from the individual
log file per function execution (see the example of ScaLAPACK QR in Section or communicate
using the inter-communicators (see the example of SuperLU Dist in Section . For example,
assuming the application code is written in C, the two suggested ways of communicating data are:
Using log file: On the master side, write the (Python) objective function (see Section 4.1) in the
following fashion:
def objectives (point):

extract task and tuning parameters from "point", and use them to define

enviroment variables (info), command line arguments (args), MPI counts (
maxprocs) and input files if needed

info = mpidpy.MPI.Info.Create() # enviroment variables

envstr= 'envi=%d\n' %(evl)

envstr+= 'env2=%d\n' % (ev2)

info.Set('env',envstr)

args = ['-al', 'Ys'%(Cavl), '-a2', 'Ys'%(av2)] # command line arguments

create the input file needed by executable # input file

SpawnedComm = mpidpy.MPI.COMM_SELF.Spawn(executable, args, maxprocs,info) # call
executable

SpawnedComm.Disconnect () # destroy inter-communicator

read objective values from the log file into res # output file

return res

On the worker side, the C function looks like the following:

int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);

MPI_Comm parent; MPI_Comm_get_parent(&parent); /* Get the inter communicator. x*/

.../* Read the parameters from environment variable, command lines and/or input
files, compute the objective function and dump it into a log file. x*/

MPI_Comm_disconnect (&parent); /* Disconnect the inter communicator. */

MPI_Finalize () ;}

Using inter-communicator: For example, the master can collect data using MPI_Reduce as

SpawnedComm.Reduce (sendbuf=None ,recvbuf=data,op=MPI_OP,root=mpidpy.MPI.R0OOT)

and the workers send the data by

ParentComm.Reduce (sendbuf=data,recvbuf=None,op=MPI_0P,root=0)

Here, “data” is the returning value, “MPI_OP” is the MPI reduce operation. Again, the syntax can

be different on the workers depending on the programming language of the application code. One

can also consider using MPI_Send and MPI_Recv for passing the data back to the master, please

refer to the mpidpy documentation for more details. One can consider modifying the following

example: On the master side, the (Python) objective function (see Section 4.1) looks like the

following;:

def objectives (point):

extract task and tuning parameters from "point", and use them to define
enviroment variables (info), command line arguments (args), MPI counts (

maxprocs) and input files if needed
info = mpidpy.MPI.Info.Create() # enviroment variables

16

envstr= 'envli=Yd\n' %(evl)

envstr+= 'env2=Y%d\n' %(ev2)
info.Set('env',envstr)
args = ['-al', 'Ys'%(Cavl), '-a2', '%s'%(av2)] # command line arguments

create the input file needed by executable # input file

SpawnedComm = mpi4py.MPI.COMM_SELF.Spawn(executable, args, maxprocs,info) # call
executable

SpawnedComm.Reduce (sendbuf=None ,recvbuf=data,op=MPI_OP,root=mpid4py.MPI.R0O0T) # use
MPI_Reduce for collect the objectives

SpawnedComm.Disconnect () # destroy inter-communicator

return res

On the workder side, the C function looks like the following;:

int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);

MPI_Comm parent; MPI_Comm_get_parent (&parent); /* Get the inter communicator. x*/

.../* Read the parameters from environment variable, command lines and/or input
files, and compute the objective function. */

MPI_Reduce (result, MPI_BOTTOM, 1, MPI_FLOAT,MPI_MAX, O, parent); # return the
values "result" to the master

MPI_Comm_disconnect (4parent); /* Disconnect the inter communicator. x*/

MPI_Finalize ();}

Running multiple function evaluations in parallel For applications that require a small to
modest core count for each objective function evaluation, it’s beneficial to even perform multiple
function evaluations simultaneously. GPTune uses MPI spawning and ThreadPoolExecutor to
support distributed- and shared-memory parallelism over number of function evaluations. Note
that the users need to use this feature with caution: one needs to make sure the output and input
files (when they exist) from different function evaluations do not interfere with each other. This
can be done by e.g., assigning each function evaluation a unique file or directory name.

GPTune parameters. objective_nprocmax: maximum core counts for each function evalu-
ation. objective_evaluation_parallelism: whether to use parallelism over different function eval-
uations. objective_multisample_processes: when both objective_evaluation_parallelism and dis-
tributed_memory_parallelism are set to True, this parameter denotes the number of process groups,
each responsible for one function evaluation. objective_multisample_threads: when both objec-
tive_evaluation_parallelism and shared_memory_parallelism are set to True, this parameter denotes
the number of threads processes for parallelizing over the number of function evaluations. See
Section .19 for details.

3.2.3 Modeling phase of MLA

The modeling phase, described in Section [3.1.1] uses the L-BFGS algorithm to find a set of LCM hy-
perparameters that minimizes the log-likelihood function using selected objective function samples.
The GPTune implementation can choose ngq+ random starting guesses of the hyperparameters,
each used by L-BFGS to search for the minimum log-likelihood. GPTune then chooses the set of
hyperparameters that yields the best log-likelihood and finishes the modeling phase.

The current implementation supports two levels of parallelism in this phase: (1) The number
of ngtart random starts and corresponding L-BFGS optimization are distributed over user specified

17

number of threads or MPI processes. Note that the shared-memory parallelism and distributed-
memory parallelism (over ngq¢) are supported mutually exclusively. GPTune uses MPI spawning
to support the distributed-memory parallelism for the random starts. (2) For each L-BFGS op-
timization, the factorization of the covariance matrix is parallelized over user specified number of
threads and MPI processes, the formation of the covariance matrix is parallelized over user speci-
fied number of threads. GPTune uses MPI spawning for distributed-memory parallelization of the
covariance matrix.

GPTune parameters. model restarts: number of random starts of the hyperparameters (i.e.,
Nstart). distributed_memory_parallelism: whether to use distributed-memory parallelism over the
random starts. model_restart_processes: number of MPI processes for parallelizing over ngsqrt-
shared_memory_parallelism: whether to use shared-memory parallelism over the random starts.
model_restart_threads: number of threads for parallelizing over ngr:. model_processes: number
of MPI processes for parallelizing factorization of the covariance matrix. model_threads: number
of OpenMP threads for parallelizing formation and factorization of the covariance matrix. See
Section .19 for details.

3.2.4 Search phase of MLA

The search phase uses evolutionary algorithms in PyGMO to search for the next sample point
in each task (see Section for details). The GPTune implementation supports two levels of
parallelism: (1) The multi-task search can be parallelized over the ¢ tasks using user-specified
number of threads or MPI processes. Note that the shared-memory parallelism and distributed-
memory parallelism (over §) are supported mutually exclusively. GPTune uses MPI spawning to
support the distributed-memory parallelism over the tasks. (2) For each task, the evolutionary
algorithm can be parallelized using user-specified number of threads.

GPTune parameters. distributed_memory_parallelism: whether to use distributed-memory
parallelism over the § tasks. search_multitask processes: number of MPI processes for paral-
lelizing over . shared_memory_parallelism: whether to use shared-memory parallelism over J.
search_multitask_threads: number of threads for parallelizing over §. search_threads: number of
threads used in PyGMO. See Section for details.

3.3 History Database
3.3.1 Design

The GPTune interface (Section {4) allows GPTune to automatically store and load historical per-
formance data to and from performance data files with JavaScript Object Notation (JSON [14])
format in the user’s local storage. Each application (tuning problem) has a separate data file that
contains all the historical performance data of the tuning problem. Figure [3|illustrates how the
history database runs along with GPTune’s Bayesian optimization.

Each JSON file contains all function evaluation results obtained from the GPTune’s Bayesian
optimization model. After evaluating each parameter configuration, GPTune stores the task pa-
rameter, the tuning parameter, and the evaluated result into the JSON file. This practice ensures
that no data is lost, in the cases where (a) a long run with many parameter configurations does
not complete due to time limitation, or (b) certain parameter configuration crashes and causes the
tuner to stop. If GPTune is run in parallel and multiple processes attempt to update the JSON
file simultaneously, the history database allows only one process to update the file at a time based

18

GPTune’s Bayesian optimization

Initial Surrogate| |y Search
Sampling Model Next

Update Mod

Historical data from
Bayesian optimization
— Function evaluation

Shared Repository

load

— Surrogate model DBMS
(MongoDB)
https://gptune.lbl.gov
Local Storage psiap 9
User provided data .
— Machine configuration| [IStore »| [historical Data History DB Web
— Software configuration| PDGEQRF
(JSON File)
Upload/download data NERSC
through the web interface. Filesystem

Figure 3: History database design.

on simple file access control (either using Python’s filelock module or using rsync-based file syn-
chronization). GPTune also records user-provided meta-description like machine configuration and
software information (e.g. which software libraries are used for that application) along with the
function evaluation results. Based on the meta information, users can determine which data are
relevant for learning from a possibly different machine or software versions or configurations. In
Section {4} we introduce several GPTune interfaces to provide the software/machine configuration.
GPTune also supports storing and loading trained GP surrogate models along with some model
statistics information such as likelihood values of the model. Users can use this feature to not
only re-use pre-trained models for autotuning, but also analyze model for research purposes (e.g.
sensitivity analysis on the tuning parameters).

To harness the power of crowd-tuning, we provide a public shared repository at https://
gptune.1lbl.gov through NERSC (https://www.nersc.gov)’s Science Gateways, where users can
upload their performance data obtained from GPTune and download performance data provided
by other users. In the shared repository, all submitted performance data is stored in a storage
provided by NERSC and internally managed by using MongoDB [6]. The shared database requires
login credentials for users to submit their performance data. Every submitted performance data
can have multiple accessibility options: publicly available data, private data, or data that can be
shared with specific users. In other words, the shared repository allows anyone to browse and
download publicly available data.

For more details about the history database methodology and the shared repository, we refer
the interested users to our online manual at https://gptune.1lbl.gov/docs.

3.3.2 JSON Format

In this section, we explain the JSON format to store performance data from GPTune. Each tuning
problem has a separate data file (e.g. tuning problem name. json) that contains all performance
data (obtained by the user and/or downloaded from the shared public database) of the tuning
problem. Each JSON file has two labels func_eval and model data. As the name indicates,

19

https://gptune.lbl.gov
https://gptune.lbl.gov
https://www.nersc.gov
https://gptune.lbl.gov/docs

e oW b =

© 0w N 3«

1

func_eval contains the list of all function evaluation results, and surrogate model contains the
list of each trained surrogate model’s meta-data.

{
"func_eval": [
{
/* function evaluation result */
Fo
{
/* function evaluation result */
Fo
1
"surrogate_model": [
{
/* surroagte model meta-data */
Fo
{
/* surroagte model meta-data */
Fo
]
}

Function Evaluation Result Listing [I| shows a function evaluation result of the PDGEQRF
routine of ScaLAPACK [5] for a given task/parameter configuration. In the listing, task_parameter
contains the information about the task parameter, and tuning parameter contains the tuning
parameter configuration, and its evaluation result is stored in output.

Each function evaluation data can also contain the information about the machine and software
configuration to run the application (or the tuning problem). The information related to the
machine configuration includes the machine name (e.g. Cori) and the number of cores/nodes
used. The software configuration includes the versions of the software packages The software
information contains the versions of software packages that are used for compiling/installing the
application. The machine and software configurations are stored in machine_configuration and
software_configuration, respectively.

Also, when saving a function evaluation result, the data-creation time and a unique ID of the
function evaluation are automatically generated and appended by GPTune. This information can
be useful if the user uploads the data into our shared repository. If different users submit function
evaluation results for the same task and parameter configurations, the database can differentiate
between different function evaluation results based on their UIDs.

{

"task_parameter": {
"m": 30000,
"n": 30000

3,

"tuning_parameter": {
"mb": 5,
"nb": 13,
"npernode": 2,

20

10 "p": 9

11 Fo

12 "evaluation_result": {

13 "r": 15.148637

14 Fo

15 "machine_configuration": {
16 "machine": "cori",

17 "haswell": {

18 "nodes": 8,

19 "cores": 32

20 Fo

21 "knl": {

22 "nodes": O,

23 "cores": O

24 ¥

25 },

26 "software_configuration": {
27 "openmpi": {

28 "version_str": "4.0.0",
29 "version_split": [

30 4,

31 0,

32 0

33 1,

34 "tags": "lib,mpi, openmpi"
35 },

36 "scalapack": {

37 "version_str": "2.1.0",
38 "version_split": [

39 2,

40 1,

41 0

42 1,

43 "tags": "lib,scalapack"
44 ¥

45 },

46 "time": {

a7 "tm_year": 2021,

48 "tm_mon": 1,

49 "tm_mday": 27,

50 "tm_hour": 21,

51 "tm_min": 22,

52 "tm_sec": 22,

53 "tm_wday": 2,

54 "tm_yday": 27,

55 "tm_isdst": O

56 T,

57 "uid": "cc7c03ec-6128-11eb-a40f-85c4081a47e2"
58 }

Listing 1: Example Function Evaluation Result

Surrogate Model Listing [2] shows the information of a surrogate model for the 1J routine of
Hypre [8] for five different function evaluation results for task {i: 200, j: 200, k: 200}.
Label hyperparameters contains the hyperparameters values which are required to reproduce

21

35
36
37

the surrogate model. Here, we assume the GPTune’s default modeling scheme (Section , based
on the LCM, is used. Recall that in LCM, eq and , the hyperparameters are l?, Qigq, Og,
biq, di. Hence, in the below example which considers one task (@ = 1) for 12 tuning parameters
(8 = 12), we store 16 hyperparameters in total (12 for l? and 1 for each of a;q, o4, big, di). As
another example, considering two tasks (@ = 2) for 12 tuning parameters (8 = 12), we need to
store 36 hyperparameters in total (24 for l?, 4 for a; 4, 2 for o4, 4 for b; 4, 2 for d;).

model _stats stores the model’s statistics information. For the GPTune’s LCM, we can store
some statistics information such as log_likelihood, neg_log_likelihood, gradients, and iteration (how
many iterations were required to converge the model). Note that, trained surrogate models may
or may not be meaningful for different problem spaces. Therefore, the JSON data also contains
task parameter information (task_parameters) and which function evaluation results were used
(func_eval) to build the surrogate model, by containing the list of the UIDs of the function
evaluation results. The history database can load trained models only if they match the problem
space of the given optimization problem. Similar to function evaluation results, the data generation
time and a unique ID of each surrogate model are also automatically appended by GPTune.

"hyperparameters": [
0.5140214197473143,
1.037247070366763,
337.6636254330382,
15.04072992869631 ,
5.107732628800839,
2.9558180040483086,
8.696644421366367 ,
26.085771260561174,
25.125605700207174,
4.608683353484095,
3.511325043265344,
1.994878529737146,
29.597204778514428,
2.3554709171760972,
9.999999586881094e-06,
69.65076357886942

1,

"model_stats": {
"log_likelihood": -35.22869969421778,
"neg_log_likelihood": 35.22869969421778,
"gradients": [

-0.5379014374164104,
0.02347984513751207,
3.1845619569323703e-06,
0.0019392480264629336 ,
0.022834797398354992,
-0.03018478674355551 ,
0.022739720419626193,
-0.00010746831896165282,
0.002468829248110913,
0.01631023320692664 ,
0.030788540386404495,
-0.024631175060550625 ,
-0.27274355043218274,
-6.198242202047159e-05,

22

38
39
40

-3.262995507641375e-05,
-0.2253219864474227

1o
"iteration": 65

}’

"func_eval": [
"09aab368-612d-11eb-8bf3-bbda784b9184d"
"09aae608-612d-11eb-8bf3-bbda784b9184d"
"09ab0c32-612d-11eb-8bf3-bbda784b9184d"
"09ab30fe-612d-11eb-8bf3-bbda784b9184d"
"09abb4ee-612d-11eb-8bf3-bbda784b918d"

i

"task_parameters": [

[
200,
200,
200
1
15
"problem_space": {
DIgTe [
{
"type": "int",
"lower_bound": 20,
"upper_bound": 1024
}’
{
"type": "int",
"lower_bound": 20,
"upper_bound": 1024
Yo
{
"type": "int",
"lower_bound": 20,
"upper_bound": 1024
¥
15
"PS": [
{
"type": "int",
"lower_bound": 1,
"upper_bound": 31
Yo
{
"type": "int",
"lower_bound": 1,
"upper_bound": 31
¥o
{
"type": "int",
"lower_bound": 30,
"upper_bound": 31
Fo
{
"type": "real",
"lower_bound": O,

23

94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

-~

[u-}

~

"upper_bound": 1

lltypell: llrealll .
"lower_bound": O,
"upper_bound": 1
Iltypell: llint n ,
"lower_bound": 1,
"upper_bound": 12
"type": "categorical",
"categories": [

non s

lI1lI .

ll2ll .

II3II .

ll4ll .

ll6ll .

II8lI .

lI10II
]
"type": "categorical",
"categories": [

n_qmn s

non s

II6lI .

lI8ll .

ll16ll ,

II18II
]
"type": "categorical",
"categories": [

ngn s

ngn ,

ll7’l .

II8lI .

ll9ll
]
lltype": llint " ,
"lower_bound": O,
"upper_bound": 5

"type": "categorical",
"categories": [

lloll .

l|3l| .

24

183
184
185

ngn s
ngn s
ngn s
ngn s
nqomn

"type": "int",
"lower_bound": O,
"upper_bound": 5
}
1
"os": [
{
"type": "real",
"lower_bound": -Infinity,
"upper_bound": Infinity

]

To

"modeler": "Model_LCM",

"objective_id": O,

"time": {
"tm_year": 2021,
"tm_mon": 1,
"tm_mday": 27,
"tm_hour": 21,
"tm_min": 52,
"tm_sec": 47,
"tm_wday": 2,
"tm_yday": 27,
"tm_isdst": O

¥o

"uid": "Ocbacce2-612d-11eb-8bf3-bbda784b9184d"

}

Listing 2: Example Surrogate Model

4 User Interface

This section describes the essential APIs for a GPTune driver. For illustration purposes, we will
describe the interfaces in the context of tuning the runtime of the parallel QR factorization routine
PDGEQRF from the ScaLAPACK package [5]. For the QR factorization time of a matrix, we
can consider the matrix dimensions (m,n) to be the task parameters. Let row block size, column
block size, MPI count per node , number of row processes, denoted by (mb, nb, npernode, p) be the
parameters to be tuned assuming fixed numbers of compute nodes and cores per node. Note that
other arguments affecting the runtime such as the number of column processes and threads per
process can be derived from these arguments. Finally let (r) be the QR runtime with fixed task
parameters and tuning parameters.

25

S Ut s W N =

-

w

3

4.1 Modify the application code

If the application code is not distributed-memory parallel, no modification is required; otherwise,
GPTune replies on the MPI spawning approach to launch the application code, which requires
slight modifications of the application code. For example assuming the application code is written
in C language, the user needs to insert MPI_Comm_get_parent and MPI_Comm _disconnect after
MPI_Init and before MPI_Finalize. The following example assumes that the parameters are passed
in via the command line options (i.e., argv) and the function values are dumped into a file. For
other options of passing parameters and returning objectives, see Section 3.2.2.

int main(int argc, char xargv[]){

MPI_Init(&argc, &argv);

MPI_Comm parent; MPI_Comm_get_parent (&parent); /* Get the inter communicator. */
.../* Read parameters from argv, compute the objective and dump it to a file. */

MPI_Comm_disconnect (&parent); /* Disconnect the inter communicator. x/
MPI_Finalize () ;}

4.2 Define the objective function to be minimized

define the multi or single objective function
def objectives (point):
extract task and tuning parameters from "point", call the application code,
and collect the results in "res".
return res

e point [Dict] (input): A dictionary containing the task parameter and tuning parameter
arguments of the objective function. point[“/;”] is the value of the task parameter argument
named “I;”, point[“P;”] is the value of the parameter argument named “P;”, see Section
for their definitions. The dictionary can also contain point[“C”] where “C” is a global

constant (e.g. total node or core counts) passed to GPTune, see Section for its definition.

e res [numpy array, shape=(1,7)] (output): Array containing the objective function value, =y
denotes dimension of the output space OS.

QR EXAMPLE:

point[“m”], point[“n”], point[“mb”], point[“nb”], point[“npernode”], point[“p”] are the task param-
eter and tuning parameter arguments for PDGEQRF. The user is responsible for writing a driver
code that dumps the parameters to an input file, calls PDGEQRF and reads the runtime from an
output file and returns the runtime in res with v = 1, e.g., using a MPI spawning approach. See
Section 5 for more details.

4.3 Define the performance models

define the coarse performance models

def models (point):

extract task and tuning parameters from "point", call the performance models,
and collect the results in "res".

return res

26

N

9

e point [Dict] (input): A dictionary containing the task parameter and tuning parameter
arguments of the objective function. point[“I;”] is the value of the task parameter argument
named “I;”, point[“P;”] is the value of the parameter argument named “P;”, see Section
for their definitions. Note that the input “point” is exactly the same as that for “objectives”.

e res [numpy array, shape=(1,7)] (output): Array containing the performance models outputs.
Note that the number of performance models 7 can be different from -~ .

QR EXAMPLE:

point[“m”], point[“n”], point[“mb”], point[“nb”], point[“npernode”], point[“p”] are the task pa-
rameter and tuning parameter arguments for PDGEQRF'. The user can use a simple performance
model res= [mn?/npernode/nodes/PF), with PF denotes the peak flop rate of the machine.

4.4 Define the performance models update

define the coarse performance models update function
def models_update (data):
for i in range(len(data.I)):
update the hyperparameters data.D[i] of the performance model for each task
uing data.I[i], data.0[i], data.P[i]

e data [Class] (input/output): The data class containing all tuning parameter configurations,
function evaluations and possible hyperparameters for each task. See Section for more
details.

QR EXAMPLE:

For the performance model res= [mn?/npernode/nodes/PF], one can either use a constant PF,
or a dynamic hyperparameter data.D[i][“PF”] per task ¢, which can be udpated using the growing
sized samples.

4.5 Edit the meta JSON file (from command line)

For each application, the GPTune python driver requires a JSON file, located at ./.gptune/meta.json,
defining application name, compute resources needed, and software dependence for both the current
tuning experiment and loadable historical data. The meta.json file can be manually edited. Alter-
natively, the meta file can be automatically generated using jq from command line. For example:

tp=application_name # define application name

nodes=1 # define number of compute nodes
cores=4 # define number of cores per node
machine=mymachine # define machine name

proc=intel -i7 # define processor type

generate current and loadable software information. Change the software names
and versions as needed.

software_json=$(echo " ,\"software_configuration\":{\"openmpil":{\"version_split\":
[4,0,1]},\"scalapack\":{\"version_split\": [2,1,0]},\"gcc\":{\"version_split\":
[8,3,01}}")

loadable_software_json=$(echo " ,\"loadable_software_configurations\":{\"openmpi\"
:{\"version_split\": [4,0,1]1},\"scalapack\":{\"version_split\": [2,1,0]1},\"gcc\
":{\"version_split\": [8,3,0]}}")

27

generate current and loadable machine information

machine_json=$(echo " ,\"machine_configuration\":{\"machine_name\":\"$machine\" ,\"$
proc\":{\"nodes\" :$nodes ,\"cores\":$cores}}")
loadable_machine_json=$(echo " ,\"loadable_machine_configurations\":{\"$machine\":{\

"$proc\":{\"nodes\":$nodes ,\"cores\":$cores}}}")

generate the meta file with jq

app_json=$(echo "{\"tuning_problem_name\":\"$tp\"")

echo "app_jsonmachine_json$software_json$loadable_machine_json$
loadable_software_json}" | jg '.' > .gptune/meta.json

4.6 Read the meta JSON file

(machine, processor, nodes, cores) = GetMachineConfiguration ()
read meta information defined in the ./gptune/meta.json file

4.7 Define the tuning parameter, task parameter and output spaces

IS = Space([Ii,I2,...,I,]): # task parameter space with instances of supported spaces
, « is the dimension of the task parameter space

PS = Space([Pi,P,...,Pgl): # tuning parameter space with instances of supported
spaces, [is the dimension of the tuning parameter space

0S = Space([01,02,...,0,]1): # output space with instances of supported spaces, 7 is

the dimension of the output space. Note that the return value of the Callable "
objectives" is a point in this space.
constraints = {"cstl" : cstl, ...} # constraints for I; and P;

e I;, P; [Scikit-optimize spaces| (input): Please refer to https://scikit-optimize.github.
io/stable/modules/classes.html?highlight=space#module-skopt.space.space for the
scikit-optimize spaces. Supported spaces for I; (and P;) :

I; = Integer (low , high, transform=“normalize”, name=*“I;"), here the “normalize” transform
converts the integers in the range [low,high] to real numbers in [0, 1], and vice versa. Please re-
fer to https://scikit-optimize.github.io/stable/modules/generated/skopt.space.
transformers.Normalize.html for more details about the transform. Note that it is re-
quired that low<high.

I; = Real(low, high, transform=*“normalize”, name=*“I;"), here the “normalize” transform
converts real numbers in the range [low,high] to [0,1]. It is required that low<high.

I; = Categoricalnorm (categories, transform=“onehot”, name=*“I;"). Note: Categoricalnorm
is compatible with Categorical but with a modified transform “onehot” that converts the cat-
egorical data to real numbers in [0, 1). Speficically, the transform first converts the categorical
data to its onehot encoding which is a 1 X « binary array with only element of 1 (e.g. the kth
element), then converts it to the real number (k — 1)/a + 1072, Conversely, the modified
transform converts any number in [(k — 1)/, k/a) to the onehot encoding with kth element
being 1, representing the kth category.

e O; [Scikit-optimize spaces| (input): Supported spaces:
O; = Real(low, high, name=“0;”). Note: if low and high are unknown, they can be set to
float(“-Inf”) and float(“Inf”), respectively.

28

https://scikit-optimize.github.io/stable/modules/classes.html?highlight=space#module-skopt.space.space
https://scikit-optimize.github.io/stable/modules/classes.html?highlight=space#module-skopt.space.space
https://scikit-optimize.github.io/stable/modules/generated/skopt.space.transformers.Normalize.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.space.transformers.Normalize.html

N O UgsE W=

10

12

13

15

16

17

18

1
2

e cstl [string or function] (input): define one constraint using (a) a string, e.g. as cstl =
“I + P, + C < 107, or (b) a callable function, e.g., as

1 # define a constraint function
2 def csti1(l1,P,C):
3 return 1+ P>+ C <10
Here I; and P» are task and tuning parameters, and C is a global constant (see Section [4.11]).

QR EXAMPLE:

nodes=1

cores=4

bunit=8 # the block size is integer multiple of bunit

m = Integer (128 , 2000, transform="normalize", name="m") # row dimension

n = Integer (128 , 2000, transform="normalize", name="n") # column dimension

IS = Space([m, n]) # task parameter space

mb = Integer (1 , 16, transform="normalize", name="mb") # row block size (divided
by bunit)

nb = Integer (1 , 16, transform="normalize", name="nb") # column block size (
divided by bunit)

npernode = Integer (0 , int(log2(cores)), transform="normalize", name="npernode")
(log2) of number of MPIs per node

p = Integer (1 , nodes*cores, transform="normalize", name="p") # number of row
processes

PS = Space([mb, nb, npernode, pl]) # tuning parameter space

r = Real (float("-Inf") , float("Inf"), name="r") # runtime

0S = Space([r]) # output space

cstl = "mb*bunit*xp<=m"
cst2 = "nb*bunit*nodes*2**npernode<=n*p"
cst3 = "nodes*2x*npernode>=p"

constraints = {"cstl" : cstl, "cst2" : cst2, "cst3" : cst3} # constraints for task
parameters and tuning parameters
constants={"nodes":nodes,"cores":cores,"bunit":bunit} # global constants

4.8 Define the tuning problem
problem = TuningProblem (IS, PS, 0S, objectives, constraints, models, constants)

define the tuning problem from the spaces, objective function, constraints,
coarse performance models and constants

e IS [Space] (input): The task parameter space defining the objective function

e PS [Space| (input): The tuning parameter space defining the tuning parameters of the ob-
jective function

e OS [Space| (input): The output space defining the output of the objective function
e objectives [Callable| (input): The objective function to be minimized
e constraints [Dict] (input): The constraints for the task parameters and tuning parameters

e models [Callable| (input): The avaiable performance models. This can be None if no model
is available.

29

e constants [Dict] (input): The global constants that can be used in objectives, constraints
and models.

e problem [Class] (output): The tuning problem

4.9 Define the computation resource

1 computer = Computer (nodes, cores, hosts) # define the computation resource used in
GPTune's internal computation. Note: the same amount of resource can be used
for invoking the objective functions as the function evaluation and the tuner's
internal computation do not run parallel to each other. See Section 5 for
examples.

e nodes [Int] (input): The minimum number of MPI processes used for GPTune different
phases

e cores [Int] (input): The maximum number of threads per MPI process used for GPTune
different phases

e hosts [Collection] (input): The list of hostnames

e computer [Class| (output): The computer class

4.10 Define and validate the options

1 options = Options() # define the default options

e options [Class| (output): The options class. See GPTune/options.py and Section for all
the options.

1 options['item'] = val # set the option named 'item' to val.

1 options.validate (computer) # check the options specified by the user

e computer [Class| (input): The computer class

4.11 Create the data class for storing samples of the spaces

1 data = Data(problem,I,P,0,D) # define the data class

e problem [Class] (input): The tuning problem class

30

e data [Class] (output): The data class to be used for storing sampled tasks, tuning parameters
and outputs.
data.I=I [list of lists]: Each entry is a list of length « representing one task sample.
data.P=P [list of [list of lists]]: Each entry corresponds to one task sample. For each entry
(list of lists), each entry is a list of length [representing one tuning parameter configuration.
data.O=0 [list of numpy arrays]: Each entry is a numpy array of shape (,7) representing
objective function values for one task sample. One row of each array represents the objective
function values for one tuning parameter configuration.
data.D=D [list of Dicts|: Each entry is a dictionary containing constants/hyperparameters
for data of one task sample.
On return, data.I=None, data.P=None, data.O=None, data.D=None if I,P,0,D is not pro-
vided. See Section for details.

4.12 Initialize GPTune

1 gptune = GPTune (problem, computer, data, options, driverabspath, models_update)
2 # initialize the tuner from the meda data

e problem [Class] (input): The tuning problem
e computer [Class| (input): The computer

e data [Class| (input): The data class. If any of data.l, data.P and data.O is None, the tuner
will generate random samples for it later.

e options [Class] (input): The options class.

e driverabspath [string] (input): Absolute path of the file containing this call. Default to
None. We recommend passing driverabspath=os.path.abspath(__file_).

e models_update [Callable] (input): The coarse performance update function (see Section
4.4)). This can be set to None if there is no performance model, or the performance model
requires no update.

e gptune [Class] (input): The tuner class that registers problem, computer, data and options
as gptune.problem, gptune.computer, gptune.data, and gptune.options, respectively.

4.13 Call multi-task learning algorithm (MLA)

1 (data, models,stats) = gptune.MLA(NS, NI, Igiven, NS1)
2 # build the MLA models and search for the optimum tuning parameters on each task

e gptune [Class]: The tuner

e NS [Int] (input): Number of total samples per task to be returned. Note that the tuner
returns immediately if the number of samples in historical data is more than NS.

31

e NI [Int] (input): Number of tasks to be modeled (i.e., NI=9) (Note that in the MLA interface
NI should match the number of tasks in the historical data (if present). If one needs to add
new tasks to the historical data, use the TLA interface in Section instead.)

e Igiven [list of lists] (input): A list of prescribed task parameters. Note that Igiven should
match the list of task parameters in the historical data (if present).

e NS1 [Int] (input):If no historical data is presesnt, the tuner generates NS1 initial random
tuning parameter samples before starting the adaptive model refinement.

e data [Class] (output): The data class containing all the task, tuning parameter and output
sampled by the tuner. len(data.I)=NI, len(data.P)=NI, len(data.O)=NI, and len(data.P[0])=NS.

e models [list of Class] (output): Each entry represents the trained LCM model for one objec-
tive in the adaptive model refinement.

e stats [Dict] (output): Memory and CPU profiles generated by the tuner

4.14 Call transfer learning algorithm (TLA)

1 (aprxopts,objval,stats) = gptune.TLA(newtask, NS)

2 # Use existing data and MLA model on pre-tuned tasks (stored in gptune.data and
gptune .models) and TLA to search for the optimum tuning parameters on each new
task

e gptune [Class|: The tuner that encapsulates the previous tuning data and models.
e newtask [list of lists] (input): newtask consists of list of prescribed tasks to be tuned
e NS [Int] (input): Maximum number of objective function evaluations

e aprxopts [list of lists] (output): Each entry (list) of the list corresponds to the predicted
best tuning parameters

e objval [list of numpy arrays| (output): Each entry of the list corresponds to objective function
values using the predicted tuning parameters for one task

e stats [Dict] (output): Memory and CPU profiles generated by the tuner

4.15 Call opentuner
1 (data,stats)=0penTuner (T, NS, tp, computer, run_id)

2 # initialize and call opentuner to generate objective function samples. If there
are multiple tasks, opentuner is invoked one task each time.

e T [list of lists] (input): A list of prescribed task parameters of length NI.
e NS [Int] (input): Number of total samples per task to be returned.

e tp [Class] (output): The tuning problem defined in Section

32

e computer [Class| (input): The computer.
e runid [String] (input): Name of the tuner (default to “OpenTuner”).

e data [Class] (output): The data class containing all the task, tuning parameter and output
sampled by the tuner. len(data.I)=NI, len(data.P)=NI, len(data.O)=NI, and len(data.P[0])=NS.

e stats [Dict] (output): Memory and CPU profiles generated by the tuner

4.16 Call hpbandster

1 (data,stats)=HpBandSter (T, NS, tp, computer, run_id)
2 # initialize and call opentuner to generate objective function samples. If there
are multiple tasks, opentuner is invoked one task each time.

e T [list of lists] (input): A list of prescribed task parameters of length NI.
e NS [Int] (input): Number of total samples per task to be returned.

e tp [Class] (output): The tuning problem defined in Section

e computer [Class| (input): The computer.

e runid [String] (input): Name of the tuner (default to “HpBandSter”).

e data [Class] (output): The data class containing all the task, tuning parameter and output
sampled by the tuner. len(data.l)=NI, len(data.P)=NI, len(data.O)=NI, and len(data.P[0])=NS.

e stats [Dict] (output): Memory and CPU profiles generated by the tuner

4.17 Invoke GPTune (from command line): default mode

1 mpirun --oversubscribe --allow-run-as-root --mca pmix_server_max_wait 3600 --mca
pmix_base_exchange_timeout 3600 --mca orte_abort_timeout 3600 --mca
plm_rsh_no_tree_spawn true -n 1 python ./application_tuner_driver.py

Here application_tuner_driver.py is the GPTune python driver that contains definitions from Section
to Section The above command invokes the GPTune tuning process. Note that these
MPI runtime parameters are necessary for OpenMPI 4.0.1, higher versions have not been tested
extensively.

4.18 Invoke GPTune (from command line): RCI mode

1 python ./application_tuner_driver_rci.py

Here application_tuner_driver_rci.py is the GPTune python driver similar to application_tuner_driver.py,
which contains definitions from Section [£.3] to Section .14 For RCI mode, the above com-
mand will execute phases in GPTune as usual, but without calling the application code. Instead,
when function evaluation is needed, the required samples will be stored in the database ./gp-
tune_db/application_name.json, which is located in the same directory as application_tuner_driver_rci.py.
The user can then search for required samples in the database, invoke the application code in bash,

33

1

2
3
4
5
6

10

11
12
13
14
15
16
17
18

19

20

21

22
23
24

write the evaluation results into the database, and then call the GPTune python driver again
to ask for next samples. As such, there is no need to define objective function as in Section
[4.2] or modify the application code as in Section Moreover, OpenMPI and its runtime pa-
rameters are not mandatory (e.g., MPICH or Spectrum MPI can also be used). Note that in
application_tuner_driver_rci.py, options[' RCI_mode’]=True is required. In addition, the interface to
opentuner (Section or hpbandster (Section is not supported in RCI mode. See Section
for a complete example.

4.19 GPTune options
The options affecting the efficiency of GPTune are listed below.

class Options(dict):
def __init__(self, **kwargs):

""" Options for GPTune """

RCI_mode = False # whether the reverse communication mode will be used
mpi_comm = None # The mpi communiator that invokes gptune if mpidpy
is installed

distributed_memory_parallelism = False # Using

distributed_memory_parallelism for the modeling (one MPI per model restart) and
search phase (one MPI per task)

shared_memory_parallelism = False # Using shared_memory_parallelism for
the modeling (one thread per model restart) and search phase (one thread per

task)

verbose = False # Control the verbosity level

oversubscribe = False # Set this to True when the physical core count is
less than computer.nodes*computer.cores and the --oversubscribe MPI runtime

option is used

""" Options for the function evaluation """

objective_evaluation_parallelism = False # Using
distributed_memory_parallelism or shared_memory_parallelism for evaluating

multiple application instances in parallel

objective_multisample_processes = None # Number of MPIs each handling one
application call

objective_multisample_threads = None # Number of threads each handling one
application call

objective_nprocmax = None # Maximum number of cores for each application call,
default to computer.cores*computer.nodes-1

""" Options for the sampling phase """

sample_class = 'SampleLHSMDU' # Supported sample classes: 'SampleLHSMDU', '
SampleOpenTURNS'

sample_algo = 'LHS-MDU' # Supported sample algorithms: 'LHS-MDU' --Latin
hypercube sampling with multidimensional uniformity, 'MCS' --Monte Carlo
Sampling

sample_max_iter = 10**9 # Maximum number of iterations for generating random

samples and testing the constraints

""" Options for the modeling phase """

model_class = 'Model_LCM' # Supported sample algorithms: 'Model_GPy_LCM' --
LCM from GPy, 'Model_LCM' -- LCM with fast and parallel inversion
model_threads = None # Number of threads used for building one GP model in
Model _LCM

34

26

27

28

29

30
31

32
33
34

35
36

37
38

39
40
41
42

43

model_processes = None # Number of MPIs used for building one GP model in

Model _LCM

model_restarts = 1 # Number of random starts each building one initial GP
model

model _restart_processes = None # Number of MPIs each handling one random
start

model_restart_threads = None # Number of threads each handling one random
start

model_max_iters = 15000 # Number of maximum iterations for the optimizers
model_latent = None # Number of latent functions for building one LCM model,

defaults to number of tasks

""" Options for the search phase """

search_threads = None # Number of threads in each thread group handling one
task

search_processes = 1 # Reserved option

search_multitask_threads = None # Number of threads groups each handling one
task

search_multitask_processes = None # Number of MPIs each handling one task
search_algo = 'pso' # Supported search algorithm in pygmo: single-objective: '
pso' -- particle swarm, 'cmaes' -- covariance matrix adaptation evolution.
multi-objective 'msga2' -- Non-dominated Sorting GA, 'nspso' -- Non-dominated
Sorting PSO, 'maco' -- Multi-objective Hypervolume-based ACO, 'moead' -- Multi-
objective EA vith Decomposition

search_pop_size = 1000 # Population size in pgymo

search_gen = 1000 # Number of evolution generations in pgymo

search_evolve = 10 # Number of times migration in pgymo

search_max_iters = 10 # Max number of searches to get results respecting the
constraints

search_more_samples = 1 # Maximum number of points selected using a multi-

objective search algorithm

Listing 3: Default GPTune options.

5 Example code

5.1 ScaLAPACK QR

As mentioned in Section 4] we can use (m,n) to define a task, then (mb,nb, npernode,p) to de-
fine the tuning parameters. Here we use simplified codes to illustrate a few typical use cases
with GPTune. Please refer to GPTune/examples/ Scalapack-DPDGEQRF /scalapack_ MLA.py,
GPTune/examples/Scalapack-DPDGEQRF /scalapack-driver /spt/pdqrdriver.py, and GPTune/ex-
amples/ Scalapack-DPDGEQRF /scalapack-driver /src/pdqrdriver.f for the complete working codes.
Use GPTune/run_examples.sh to run the tests.

5.1.1 Preparing the meta JSON file

For each application directory, GPTune requires the use of a meta JSON file located at ./gp-
tune/meta.json to define application names, machine, software configurations for the current ex-
periment, as well as those for usable historical/shared dababases. For example, a meta JSON file
for PDGEQRF looks like the following (Listing

35

© 00 g9 O g W N =

e e e
B W N o= O

~

"tuning_problem_name": "PDGEQRF",
"machine_configuration": {
"machine_name": "mymachine",
"intel": {
"nodes": 1,
"cores": 16
}
1,
"software_configuration": {
"openmpi": {
"version_split": [
4,
0’
1
]
}’
"scalapack": {
"version_split": [

"gee": {
"version_split": [
8,
3,
0

}
}’
"loadable_machine_configurations":
"mymachine": {
"intel": {
"nodes": 1,
"cores": 16

}
}’

"loadable_software_configurations":

"openmpi": {
"version_split": [
4,
0,
1
]
¥o
"scalapack": {
"version_split": [
2,
1,
0

}’
Ilgccll: {

36

57 "version_split": [
58 8,

59 3,

60 0

61 1

62 ¥

63 }

64 }

Listing 4: meta.json for PDGEQRF

This file can be manually edited for the current tuning experiment.
Alternatively, this process can be automated by using the command-line JSON parser jq. For
example:

1 tp=PDGEQRF

2 nodes=1

3 cores=16

4 machine=mymachine

5 proc=intel

6 software_json=$(echo ",\"software_configuration\":{\"openmpi\":{\"version_split\":
[4,0,1]},\"scalapack\":{\"version_split\": [2,1,0]},\"gcc\":{\"version_split\":

[8,3,01}}™)

7 loadable_software_json=$(echo ",\"loadable_software_configurations\":{\"openmpi\"
:{\"version_split\": [4,0,1]},\"scalapack\":{\"version_split\": [2,1,0]},\"gcc\
":{\"version_split\": [8,3,01}}")

8 machine_json=$(echo " ,\"machine_configuration\":{\"machine_name\":\"$machine\" ,\"$
proc\":{\"nodes\":$nodes ,\"cores\":$cores}t}")

9 loadable_machine_json=$(echo ",\"loadable_machine_configurations\":{\"$machine\":{\

"$proc\":{\"nodes\" :$nodes ,\"cores\":$cores}}t}")

11 app_json=$(echo "{\"tuning_problem_name\":\"$tp\"")
12 echo "app_jsonmachine_json$software_json$loadable_machine_json$
loadable_software_jsonl}" | jgq '.' > .gptune/meta.json

5.1.2 MLA

This example builds a LCM model of the PDGEQRF example for two user specified tasks [[400,500],[800,600]].
The Python interface to the Fortran application (pdqrdriver) will dump the task parameter and

tuning parameters into an input file named ‘“GPTune/examples/scalapack-driver/exp/MACHI
NE_NAME/TUNER_-NAME/JOBID/QR.in”, invoke the Fortran application code pdqrdriver.f,

then read the return values from an output file named ‘“GPTune/examples/scalapack-driver/e
xp/MACHINE_NAME/TUNER_NAME/JOBID/QR.out”. The variables “MACHINE_NAME”,
“TUNER_NAME”, and “JOBID” can be defined by the user.

In terms of computation resource, “nodes=1" and “cores=16" are used for GPTune’s several
phases and for invoking the application code (pdqrdriver.f). As we use MPI spawn to invoke the
application, one process is reserved as the spawning process. Therefore it’s recommended allocating
nodes+1 compute nodes with 1 node reserved for MPI spawning.

Note that to reduce the runtime noise, the Python driver will execute the same task and
tuning parameter configuration three times (niter=3 as an argument of pdqrdriver) and return the
minimum runtime as the function value.

37

2 ''' Pass the inputs and parameters from Python to the Fortran driver using files
RUNDIR/QR.in, note that the the inputs and parameters are duplicated for niter

times.'"''

3 def write_input (params, RUNDIR, niter=1):

4 fin = open("%s/QR.in"%(RUNDIR), 'w')

5 fin.write("%d\n"%(len(params) * niter))

6 for param in params:

7 for k in range(mniter):

8 fin.write("%2s7%6d%6d%6d%6d%6d%6d%20.13E\n"%(param[0], param[1], param[2],
param[5], param[6], param[9], param[10],param([11]))

9 fin.close()

10

11 '''" Execute the Fortran driver using MPI spawn. Note that the inputs and
parameters are passed to Frotran using environment vairables, command lines and

files. '''

12 def execute(nproc, nthreads, RUNDIR):

13 info = MPI.Info.Create()

14 info.Set('env', 'OMP_NUM_THREADS=%d\n' %(nthreads))

15 print ('exec', "%s/pdqrdriver"%(BINDIR), 'args', "%s/"%(RUNDIR), 'mproc', nproc)

16 comm = MPI.COMM_SELF.Spawn("%s/pdqrdriver"%(BINDIR), args="Ys/"%(RUNDIR),
maxprocs=nproc ,info=info)

17 comm.Disconnect ()

18 return

19

20 ''' Read the runtime from the output file RUNDIR/QR.out which contains the runtime

for the same parameters by running QR factorization for niter times. Only the
minimum among the niter runtimes is returned. '''
21 def read_output (params, RUNDIR, niter=1):
22 fout = open("%s/QR.out"%(RUNDIR), 'r')

23 times = float ('Inf')

24 for line in fout.readlines():

25 words = line.split ()

26 if (len(words) > 0 and words [0] == "WALL"):
27 if (words[9] == "PASSED"):

28 mytime = float (words[7])

29 if (mytime < times):

30 times = mytime

31 fout.close ()

32 return times

33

3¢ ''' The Python dirver that writes parameters to individual files, runs the Fortran

driver , and read the runtime from individual files. Note the same parameter is
executed niter times. '''

35 def pdqrdriver (params, niter=10,J0BID: int = None):

36 global EXPDIR # path to the input and output files

37 global BINDIR # path to the executable

38 global ROOTDIR # path to the folder "scalapack-driver"

40 ROOTDIR = os.path.abspath(os.path.join(os.path.realpath(__file__), '/scalapack-
driver'))

41 BINDIR = os.path.abspath(os.path.join(ROOTDIR, "bin", MACHINE_NAME))

42 EXPDIR = os.path.abspath(os.path.join(ROOTDIR, "exp", MACHINE_NAME + '/' +
TUNER_NAME))

43

44 if (JOBID==-1): # -1 is the default value if jobid is not set

45 JOBID = os.getpid()

38

46 RUNDIR = os.path.abspath(os.path.join(EXPDIR, str(JOBID)))
a7 os.system("mkdir -p %s"%(EXPDIR))
48 os.system("mkdir -p %s"%(RUNDIR))

49 idxproc = 8 # the index in params representing MPI counts

50 idxth = 7 # the index in params representing thread counts

51 write_input (params, RUNDIR, niter=niter)

52 execute (params [idxproc], params[idxth], RUNDIR)

53 times = read_output (params, RUNDIR, niter=niter)

54 return times

55

56 ''' The objective function required by GPTune. '''

57 def objectives (point):

58 # global constants defined in TuningProblem

59 nodes = point['nodes']

60 cores = point['cores']

61 bunit = point['bunit']

62 # task and tuning parameters

63 m = point['m']

64 n = point['n']

65 mb = point['mb']*bunit

66 nb = point['nb']*bunit

67 p = point['p']

68 npernode = 2x*point['npernode']

69 nproc = nodes*npernode

70 nthreads = int(cores / npernode)

71 if (nproc==0 or p==0 or nproc<p): # this become useful when the parameters
returned by TLA1l do not respect the constraints

72 print ('Warning: wrong parameters for objective function!!!')

73 return lel2

74 q = int(nproc / p)

75 nproc = p*q

76 params = [('QR', m, n, nodes, cores, mb, nb, nthreads, nproc, p, q, 1.)]

77 elapsedtime = pdqrdriver (params, niter = 3)

78 print (params, ' scalapack time: ', elapsedtime)

79 return elapsedtime

80

g1 def main():

82 global JOBID

83 mmax = 2000 # maximum row dimension

84 nmax = 2000 # maximum column dimension

85 ntask = 2 # 2 tasks used for MLA

86 NS = 20 # 20 samples per task

87 JOBID = 0 # JOBID is part of the input/output file names

88 TUNER_NAME='GPTune' # TUNER_NAME is part of the input/output file names
89 # read the meta.json file

90 (machine, processor, nodes, cores) = GetMachineConfiguration ()

91 print ("machine: " + machine + " processor: " + processor + " num_nodes: " + str
(nodes) + " num_cores: " + str(cores))

92 os.environ['MACHINE_NAME'] = machine

93 os.environ['TUNER_NAME'] = TUNER_NAME

94

95 """ Define and print the spaces and constraints """

96 # Task Parameters

97 m = Integer (128 , mmax, transform="normalize", name="m"

98 n = Integer (128 , nmax, transform="normalize", name="n"

99 IS = Space([m, nl)

39

100
101
102
103

104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124

125
126
127
128

129
130
131
132
133
134

135
136
137
138
139
140
141
142

143
144
145

Tuning Parameters

mb = Integer (1 , 512, transform="normalize", name="mb")

nb = Integer (1 , 512, transform="normalize", name="nb")

npernode = Integer (0, int(math.log2(cores)), transform="normalize",
name="npernode")

) = Integer (1 , nodes*cores, transform="normalize", name="p")

PS = Space([mb, nb, npernode, pl)

Output

r = Real (float("-Inf") , float("Inf"), name="r"

0S = Space([r])
Constraints

cstl = "mb*bunit*p<=m"

cst2 = "nb*bunit*nodes*2**npernode<=n*p"

cst3 = "nodes*2**npernode>=p"

constraints = {"cstl" : cstl, "cst2" : cst2, "cst3" : cst3}

constants={"nodes" :nodes,"cores":cores,"bunit":bunit}
print (IS, PS, 0S, constraints)

problem = TuningProblem (IS, PS, 0S, objective, constraints, None, constants)
computer = Computer (nodes = nodes, cores = cores, hosts = None)
""" Set and validate options """
options = Options ()

options['model_restarts'] = 4 # number of GP models being built in one
iteration (only the best model is retained)
options['distributed_memory_parallelism'] = True # True: Use MPI. One MPI per
model start in the modeling phase, one MPI per task in the search phase
options['shared_memory_parallelism'] = False # True: Use threads. One thread per
model start in the modeling phase, one MPI per task in the search phase
options.validate (computer = computer)

""" Intialize the tuner with existing data"""

data = Data(problem) # intialize with empty data, but can also load data from
previous runs
gptune = GPTune (problem, computer = computer, data = data, options = options)

""" Building MLA with the given list of tasks """

giventask = [[400,500],[800,600]]

NI = len(giventask)

(data, models,stats) = gptune.MLA(NS=NS, NI=NI, Igiven =giventask, NS1 = max (NS
//2,1))

print ("stats: ",stats)

""" Print all input and parameter samples """

for tid in range (NI):
print ("tid: %d" % (tid))

print (" m:%d n:%d" % (data.I[tid][0], data.I[tid][1]))
print (" Ps ", data.P[tid])
print (" Os ", data.0[tid].tolist())
print (' Popt ', data.P[tid][np.argmin(data.0[tid])], 'Oopt ', min(data.O[
tid]) [0], 'nth ', np.argmin(data.0[tid]))
__name__ == "__main__":
main ()

Listing 5: scalapack QR example: scalapack_MLA.py.

40

PROGRAM PDQRDRIVER

CHARACTER *200 FILEDIR

INTEGER IAM

INTEGER master

PARAMETER (NIN = 1, NOUT = 2)

DATA KTESTS, KPASS, KFAIL, KSKIP /4%0/

0w N O g W N =

g Get starting information
CALL GETARG(1,FILEDIR)
CALL MPI_INIT (ierr)
CALL MPI_COMM_GET_PARENT (master, ierr)
CALL BLACS_PINFO(IAM, NPROCS)

e e e
s W NN o= O ©
*

Open input file
OPEN(NIN, FILE=trim(FILEDIR)//'QR.in', STATUS='0LD')
IF(IAM.EQ.O0) THEN
OPEN(NOUT, FILE=trim(FILEDIR)//'QR.out', STATUS='UNKNOWN')
END IF

I S S SR
S © ® N o
*

Read number of configurations

READ(NIN, FMT = 1111) NBCONF

Print headings

IF(IAM.EQ.O) THEN
WRITE(NOUT, FMT
WRITE(NOUT, FMT
WRITE(NOUT, FMT
WRITE(NOUT, FMT

END IF

NN
[VR
*

*)
9995)
9994)
*)

¥
=

[V
t

NN NN
© 0 I o
1

w
(=]
*

Run the computation for NBCONF times and dump the runtime to QR.out
DO 50 CONFIG = 1, NBCONF

w W w
w N =

END DO

w W w
[S R
*

Print out ending messages and close output file
IF(IAM.EQ.O) THEN

KTESTS = KPASS + KFAIL + KSKIP

WRITE(NOUT, FMT = *)

WRITE(NOUT, FMT 9992) KTESTS

IF(CHECK) THEN

WRITE(NOUT, FMT 9991) KPASS
WRITE(NOUT, FMT = 9989) KFAIL

ELSE
45 WRITE(NOUT, FMT
46 END IF
47 WRITE(NOUT, FMT 9988) KSKIP
48 WRITE(NOUT, FMT = *)
49 WRITE(NOUT, FMT = *)
50 WRITE(NOUT, FMT 9987)
51 END IF
52
53 * Close input and output files
54 CLOSE(NIN)
55 IF(IAM.EQ.O0) THEN
56 CLOSE(NOUT)

AR A A W W W
W N = O © W =
1]

[}

'y
=~

9990) KPASS

41

61
62
63

65
66

67

68
69
70
71
72
73
74
75
76

© 0 N O Ut W N

11
12

END IF

* Disconnect the inter communicator, destroy BLACS grid and the inter
communicator
call MPI_COMM_DISCONNECT (master, ierr)
CALL BLACS_EXIT(1)
call MPI_Finalize(ierr)

* Formats
1111 FORMAT(I6)
9995 FORMAT('TIME M N MB NB P Q Fact Time ',' MFLOPS
CHECK Residual')
9994 FORMAT('---- —-=-==-= -—-—-—---- coo coo coooo oooos cooooooos I, lcoccosocoos
______________ ")
9992 FORMAT('Finished ', I6, ' tests, with the following results:')

9991 FORMAT(I5, ' tests completed and passed residual checks.')
9990 FORMAT(I5, ' tests completed without checking.')

9989 FORMAT(I5, ' tests completed and failed residual checks.')
9988 FORMAT(I5, ' tests skipped because of illegal input values.')
9987 FORMAT('END OF TESTS.')

STOP
END

Listing 6: pdqrdriver.f.

In order to run the tuning experiment, use the following mpirun command:

mpirun --oversubscribe --allow-run-as-root --mca pmix_server_max_wait 3600 --mca
pmix_base_exchange_timeout 3600 --mca orte_abort_timeout 3600 --mca
plm_rsh_no_tree_spawn true -n 1 python ./scalapack_MLA.py

Note that these MPI runtime parameters are necessary for OpenMPI 4.0.1, higher versions have
not been tested extensively.
As all the function evaluation data are check-pointed using JSON files (./gptune_db/applicationname.json),
GPTune is fault resilient. In case the tuning is interrupted due to timeout or code crashes, just
rerun the above command and GPTune will continue tuning as expected.
The following example runlog illustrates how to understand the code generated information.
First, the code prints out the IS, PS and OS. Then it shows the parallelization parameters being
used by GPTune. Next, the code prints different phases in each MLA iteration. Next, the tuner
runtime profile is printed. Finally, all and the best samples of each task are listed.

IS: Space([Integer (low=128, high=2000),
Integer (low=128, high=2000)1)
PS: Space([Integer(low=1, high=128),
Integer (low=1, high=128),
Integer (low=4, high=31),
Integer (low=1, high=31)])
0S: Space([Real(low=-inf, high=inf, prior='uniform', transform='identity')])
constraints: {'cstl': 'mb * p <= m', 'cst2': 'nmb * nproc <= n * p', 'cst3': 'nproc
>= p'}

—————— Validating the options
total core counts provided to GPTune: 32

42

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39
40
41
42
43

o oo O OO O U o Ul gt oor Ot Ol Ot ot Ot A R R A R A
=W N = O © 0N O U R W= O YO O

65
66
67
68

---> distributed_memory_parallelism: True
---> shared_memory_parallelism: False
---> objective_evaluation_parallelism: False

total core counts for modeling: 29
---> model_processes: 6
---> model_threads: 1
---> model_restart_processes: 4
---> model_restart_threads: 1

total core counts for search: 32
---> search_processes: 1
---> search_threads: 1
---> search_multitask_processes: 31
---> search_multitask_threads: 1

total core counts for objective function evaluation: 32
---> core counts in a single application run: 31
---> objective_multisample_processes: 1
---> objective_multisample_threads: 1

------Starting MLA with 2 tasks
MLA initial sampling:

MLA iteration: 0
MLA iteration: 9

stats: {'time_total': 61.6, 'time_fun': 18.4, 'time_search': 11.9, 'time_model':
31.1}

tid: 0
m:400 n:500

Ps [[28, 47, 15, 91, [9, 124, 26, 17], [38, 50, 15, 101, [1, 117, 28, 18],
tr7, 73, 9, 31,031, 50, 16, 71, ([8, 117, 28, 191, [71, 67, 8, 2],

(35, 39, 15, 91, [13, 116, 27, 16],[121, 102, 7, 2], [101, 128, 5, 2],

(21, 13, 27, 31, [15, 127, 6, 2], [16, 14, 30, 2],[49, 30, 27, 2],

(106, 6, 29, 2], [108, 31, 6, 2], [32, 14, 31, 2], [86, 5, 25, 2]]

O0s [[0.0092]1[0.01571[0.01]1[0.0152]1[0.0083][0.0082][0.0171][0.0079]
[0.0104][0.0143][0.009][0.0112][0.0068][0.0102][0.006][0.0057]
[0.0066][0.0061][0.0059][0.0062]]

Popt [49, 30, 27, 2] Oopt 0.005727

tid: 1
m:800 n:600

Ps [[32, 40, 16, 8], [13, 116, 28, 17], [76, 65, 7, 2], [116, 5, 30, 6],
[33, 51, 15, 91, [5, 123, 26, 161, [65, 69, 9, 3], [116, 11, 29, 4],

[31, 44, 17, 71, [11, 117, 28, 18]1,[119, 124, 26, 6], [12, 72, 21, 8],
(g7, 10, 31, 41, [1, 101, 7, 41, [122, 7, 22, 4],[40, 26, 28, 2],

[101, 21, 26, 21, [97, 37, 12, 31, [2, 2, 29, 2], [29, 10, 30, 11]

43

69
70
71
72
73

© 0 N O U W N =

© 0 N O U s W N =

O0s [[0.0136]1[0.0239][0.0174]1[0.0177]1[0.01411[0.0231]1[0.0174]1[0.014]
[0.0116]1[0.0248][0.0237]1[0.015 1[0.0144]1[0.0169]1[0.0145][0.0122]
[0.0118][0.0127][0.0201][0.0103]]

Popt [29, 10, 30, 1] Oopt 0.01032
Listing 7: runlog of MLA

5.1.3 MLA4TLA

Inserting the following code segments after line 142 of Listing [5] GPTune will call TLA to predict
the optimal tuning parameters for 1 new task [[450,450]].

""" Call TLA for 1 new task using the constructed LCM model"""
newtask = [[450, 450]]
(aprxopts, objval, stats) = gt.TLAl(newtask, NS=None)
print ("stats: ", stats)
""" Print the optimal parameters and function evaluations"""
for tid in range(len(newtask)):
print ("new task: %s" % (newtask[tid]))
print (' predicted Popt: ', aprxopts[tid], ' objval: ', objvall[tid])

Listing 8: scalapack QR example: MLA+TLA.

The following runlog illustrates how the output of TLA looks like. Please refer to Section [5.1.2
for the output of MLA.

IS: Space([Integer (low=128, high=2000),
Integer (low=128, high=2000)1)
PS: Space([Integer (low=1, high=128),
Integer (low=1, high=128),
Integer (low=4, high=31),
Integer (low=1, high=31)])
0S: Space([Real(low=-inf, high=inf, prior='uniform', transform='identity')])
constraints: {'cstl': 'mb * p <= m', 'cst2': 'nb * nproc <= n * p', 'cst3': 'mnproc
>= p'}

—————— Validating the options
total core counts provided to GPTune: 32
---> distributed_memory_parallelism: True
---> shared_memory_parallelism: False
---> objective_evaluation_parallelism: False

total core counts for modeling: 3
---> model_processes: 1
---> model_threads: 1
---> model_restart_processes: 1
---> model_restart_threads: 1

total core counts for search: 32
---> search_processes: 1
---> search_threads: 1
---> search_multitask_processes: 31
---> search_multitask_threads: 1

44

28
29
30
31
32
33
34
35

total core counts for objective function evaluation: 32
---> core counts in a single application run: 31
---> objective_multisample_processes: 1
---> objective_multisample_threads: 1

—————— Starting MLA with 10 tasks

36 ...

37
38
39
40
41
42
43
44

1
2
3

—————— Starting TLA1 for task: [[400, 500], [800, 60011

stats: {'time_total': 1.337391381, 'time_fun': 0.906422981}%}
new task: [400, 500]

predicted Popt: [38, 15, 27, 11 objval: [[0.004]]
new task: [800, 600]

predicted Popt: [35, 15, 30, 1] objval: [[0.0103]]

Listing 9: runlog of MLA+TLA (the part of MLA is skipped)

5.2 SuperLU_DIST

For a typical SuperLU_DIST driver, one can use a given sparse matrix to define a task, and consider
(COLPERM, LOOKAHEAD, npernode, nprows, NSUP, NREL) to be the tuning parameters af-
fecting the objective function (e.g., runtime). Here COLPERM is the column permutation option,
LOOKAHEAD is the size of the lookahead window in the factorization, npernode is the MPI count
per compute node, nprows is the number of row processes, NSUP is the maximum supernode size,
and NREL is the supernode relaxation parameter. Just like the ScaLAPACK example, we use a
MPI spawn approach to invoke the application code (pddrive_spawn.c). However, this example
does not use files for passing information between the driver and the application. Instead, some
task parameters and tuning parameters are passed to the application through command lines, while
the others are passed through environment variables; the output is passed back using the spawned
MPI communicator.

5.2.1 Preparing the meta JSON file

Just like PDGEQRF, a meta JSON file located at ./gptune/meta.json needs to be edited for
SuperLU_DIST.

5.2.2 MLA4TLA

The following example first calls MLA to build a LCM model for the SuperLU_DIST driver
pddrive_spawn.c using two tasks [[“g4.rua”], [“g20.rua”]], then calls TLA to predict the optimal
tuning parameters for a new task [[“big.rua”]]. Note that only the simplified code is shown here,
please refer to GPTune/examples/SuperLU_DIST /superlu_MLA.py and
GPTune/examples/SuperLU_DIST /superlu_dist/ EXAMPLE/pddrive_spawn.c for the complete work-
ing codes.

def objectives (point):

nodes = point['nodes']
cores = point['cores']

45

© 0w N 3

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29

30

31
32

33
34

46
47
48
49

RUNDIR = os.path.abspath(__file__ + "/../superlu_dist/build/EXAMPLE") # the path

to the executable

INPUTDIR = os.path.abspath(__file__ + "/../superlu_dist/EXAMPLE/") # the path to

the matrix collection

matrix = point['matrix']

COLPERM = point['COLPERM']
LOOKAHEAD = point['LOOKAHEAD']
nprows = point['nprows']
npernode = 2x*point['npernode']
nproc = nodes*npernode

nthreads = int(cores / npernode)

NSUP = point['NSUP']

NREL = point['NREL']

npcols = int (nproc / nprows)

nproc = int (nprows * npcols)

params = [matrix, 'COLPERM', COLPERM, 'LOOKAHEAD', LOOKAHEAD, 'nthreads',

nthreads, 'nprows', nprows, 'mpcols', npcols, 'NSUP', NSUP, 'NREL', NREL]

""" pass some parameters through environment variables """
info = MPI.Info.Create()

envstr= 'OMP_NUM_THREADS=%d\n' %(nthreads)

envstr+= 'NREL=%d\n' % (NREL)

envstr+= 'NSUP=%d\n' %(NSUP)

info.Set('env',envstr)

info.Set('npernode','’d'%(npernode)) # YL: npernode is deprecated in openmpi

4.0, but no other parameter (e.g. 'map-by') works

nun

inputs through command line """

use MPI spawn to call the executable, and pass the other parameters and

comm = MPI.COMM_SELF.Spawn("%s/pddrive_spawn"%(RUNDIR), args=['-c', '%s'%(npcols
), '-r', '%s'%(nprows), '-1', '%s'%(LOOKAHEAD), '-p', '%s'%h(COLPERM), '%s/%s'%(

INPUTDIR ,matrix)], maxprocs=nproc,info=info)

nun

gather the return value using the inter-communicator, also refer to the

INPUTDIR/pddrive_spawn.c to see how the return value are communicated """

tmpdata = array('f', [0,0])

comm.Reduce (sendbuf=None, recvbuf=[tmpdata,MPI.FLOAT],op=MPI.MAX,root=mpidpy.MPI

.R0OOT)
comm.Disconnect ()
retval = tmpdata[0]
print (params, ' superlu time: ', retval)
return [retvall
def main():
ntask = 2 # 2 tasks used for MLA
NS = 20 # 20 samples per task

matrices = ["big.rua", "g4.rua", "g20.rua"]

read the meta.json file

(machine, processor, nodes, cores) = GetMachineConfiguration ()

print ("machine: " + machine + " processor: " + processor + " num_nodes:
(nodes) + " num_cores: " + str(cores))

nun nnn

Define and print the spaces and constraints
Task Parameters
matrix = Categoricalnorm (matrices, transform="onehot", name="matrix")

46

" + str

65
66
67
68
69
70
71
72
73

74

76
77
78
79

80

81
82
83
84

86
87
88
89
90
91
92
93
94

95
96

IS = Space([matrix])
Tuning Parameters

COLPERM = Categoricalnorm (['2', '4'], transform="onehot", name="COLPERM")

LOOKAHEAD = Integer (5, 20, transform="normalize", name="LOOKAHEAD")

nprows = Integer (1, nprocmax, transform="normalize", name="nprows")

npernode = Integer (0, int(log2(cores)), transform="normalize", name="
npernode")

NSUP = Integer (30, 300, transform="normalize", name="NSUP")

NREL = Integer (10, 40, transform="normalize", name="NREL")

PS = Space ([COLPERM, LOOKAHEAD, npernode, nprows, NSUP, NREL])

Output

time = Real (float ("-Inf") , float("Inf"), transform="normalize", name=
"time")

0S = Space([timel])
Constraints

cstl = "NSUP >= NREL"
cst2 = "nodes * 2**npernode >= nprows"
constraints = {"cstl" : cstl, "cst2" : cst2}

constants={"nodes" :nodes,"cores":cores}

print (IS, PS, 0S, constraints)

problem = TuningProblem (IS, PS, 0S, objectives, constraints, None, constants)
computer = Computer (nodes = nodes, cores = cores, hosts = None)

""" Set and validate options """
options = Options ()

options['model_restarts'] = 4 # number of GP models being built in one
iteration (only the best model is retained)
options['distributed_memory_parallelism'] = True # True: Use MPI. One MPI per
model start in the modeling phase, one MPI per task in the search phase
options['shared_memory_parallelism'] = False # True: Use threads. One thread per
model start in the modeling phase, one MPI per task in the search phase
options.validate (computer = computer)

""" Intialize the tuner with existing data"""

data = Data(problem) # intialize with empty data, but can also load data from
previous runs

gt = GPTune (problem, computer = computer, data = data, options = options,
driverabspath=os.path.abspath(__file__))

""" Build MLA with the given list of tasks """

giventask = [["g4.rua"]l, ["g20.rua"]]

NI = len(giventask)

(data, model,stats) = gt.MLA(NS=NS, NI=NI, Igiven =giventask, NS1 = max(NS//2,1)
)

print ("stats: ",stats)

""" Print all task input and parameter samples """
for tid in range (NI):
print ("tid: %d"%(tid))

print (" matrix:%s"%(data.I[tid] [0]))

print (" Ps ", data.P[tid])

print (" Os ", data.0[tid].tolist())

print (' Popt ', data.P[tid][np.argmin(data.0[tid])], 'Oopt ', min(data.O[
tid]) [0], 'nth ', np.argmin(data.0[tid]))

""" Call TLA for a new task using the constructed LCM model"""

47

97

98

99
100
101
102
103
104
105
106
107

35
36
37
38
39
40
41

newtask = [["big.rua"]]
(aprxopts ,objval ,stats) = gptune.TLAl(newtask, NS=None)
print ("stats: ",stats)

""" Print the optimal parameters and function evaluations"""
for tid in range(len(newtask)):
print ("new task: %s"%(newtask[tid]))

print (' predicted Popt: ', aprxopts[tid], ' objval: ',objvall[tid])
if __name__ == "__main__":
main ()

Listing 10: superlu_MLA.py.

int main(int argc, char *argv[])

{
int nprow, npcol,lookahead,colperm;
char **xcpp, C;
FILE *fp;

MPI_Comm parent;

/* Intialize MPI and get the inter communicator. x/
MPI_Init(&argc, &argv);
MPI_Comm_get_parent (&parent) ;

/* Read the input and parameters from command line arguments. */
for (cpp = argv+l; *cpp; ++cpp) {

if (**cpp == '-') {
c = x(xcpp+1);
+t+cpp;
switch (c) {
case 'h':
printf ("Options:\n");
printf ("\t-r <int>: process rows (default %4d)\n", nprow);
printf ("\t-c <int>: process columns (default 7%4d)\n", npcol);
exit (0) ;
break;
case 'r': nprow = atoi(*xcpp); // number of row processes
break;
case 'c': npcol = atoi(*cpp); // number of column processes
break;
case 'l': lookahead = atoi(*cpp); // size of lookahead window
break;
case 'p': colperm = atoi(*cpp); // column permutation
break;
}
} else { /* Last arg is considered a filename x*/
if (!'(fp = fopen(xcpp, "r"))) { // the file storing the sparse
matrix
ABORT ("File does not exist");
}
break;
}
}

/* Read the input and parameters from environment variables (including NSUP,

48

<

NREL and OMP_NUM_THREADS) x*/
if (master process) {
print_sp_ienv_dist (&options);
print_options_dist (&options);
fflush(stdout) ;
}

/* Allocate superlu meta-data and call the computation routine. */

70 o<

/* sending the results (numerical factorization time) to the parent process */
result = runtime results;
MPI_Reduce (result, MPI_BOTTOM, 1, MPI_FLOAT,MPI_MAX, O, parent);

/* DEALLOCATE SuprelLU meta-data. */
// ...

/* Disconnect the inter communicator and finalize the intra communicator. */
MPI_Comm_disconnect (&parent) ;
MPI_Finalize () ;

Listing 11: pddrive_spawn.c.

5.2.3 Muti-objective MLA

The following example demonstrates the capability of multi-objective auto-tuning feature of GP-
Tune with two objectives (runtime and memory of a sparse LU factorization). The example calls
MLA to build a LCM model per objective for the SuperLU_DIST driver pddrive_spawn.c using
three tasks [[“big.rua”], [“g4.rua”], [“g20.rua”]]. Note that only the simplified code is shown here,
please refer to GPTune/examples/SuperLU_DIST /superlu_MLA_MO.py and GPTune/examples/-
SuperLU_DIST /superlu_dist/ EXAMPLE /pddrive_spawn.c for the complete working codes.

def objectives (point):

nodes = point['nodes']

cores = point['cores']

RUNDIR = os.path.abspath(__file__ + "/../superlu_dist/build/EXAMPLE") # the path
to the executable

INPUTDIR = os.path.abspath(__file__ + "/../superlu_dist/EXAMPLE/") # the path to
the matrix collection

matrix = point['matrix']

COLPERM = point['COLPERM']

LOOKAHEAD = point ['LOOKAHEAD']

nprows = point['nprows']

npernode = 2x*point['npernode']

nproc = nodes*npernode

nthreads = int(cores / npernode)

NSUP = point ['NSUP']

NREL = point['NREL']
npcols = int (nproc / nprows)
nproc = int (nprows * npcols)

params = [matrix, 'COLPERM', COLPERM, 'LOOKAHEAD', LOOKAHEAD, 'nthreads',
nthreads, 'nprows', nprows, 'mpcols', npcols, 'NSUP', NSUP, 'NREL', NREL]

49

nun

20 """ pass some parameters through environment variables
21 info = MPI.Info.Create()

22 envstr= 'OMP_NUM_THREADS=Y%d\n' J(nthreads)

23 envstr+= 'NREL=%d\n' J%(NREL)

24 envstr+= 'NSUP=/d\n' %(NSUP)

25 info.Set('env',envstr)

26 info.Set('npernode','’d'%(npernode)) # YL: npernode is deprecated in openmpi
4.0, but no other parameter (e.g. 'map-by') works

27

28 """ use MPI spawn to call the executable, and pass the other parameters and
inputs through command line """

29 comm = MPI.COMM_SELF.Spawn("%s/pddrive_spawn"%(RUNDIR), args=['-c', '%s'/(npcols
), '-r', '"%s'%(nprows), '-1', '%s'%(LOOKAHEAD), '-p', '%s'%(COLPERM), '%s/%s'%(
INPUTDIR ,matrix)], maxprocs=nproc,info=info)

30

31 """ gather the return value using the inter-communicator, also refer to the

INPUTDIR/pddrive_spawn.c to see how the return value are communicated """

32 tmpdata = array('f', [0,0])
33 comm.Reduce (sendbuf=None, recvbuf=[tmpdata,MPI.FLOAT],op=MPI.MAX,root=mpidpy.MPI

.ROOT)
34 comm.Disconnect ()
35
36 print (params, ' superlu time: ', tmpdatal[O], ' memory: ', tmpdatal1])
37 return tmpdata
38
39
40

41 def main():
42 ntask = 3 # 3 tasks used for MLA
43 NS = 20 # 20 samples per task

44 matrices = ["big.rua", "g4.rua", "g20.rua"]

45 (machine, processor, nodes, cores) = GetMachineConfiguration ()

46 print ("machine: " + machine + " processor: " + processor + " num_nodes: " + str
(nodes) + " num_cores: " + str(cores))

47

48

49 """ Define and print the spaces and constraints """

50 # Task Parameters

51 matrix = Categoricalnorm (matrices, transform="onehot", name="matrix")

52 IS = Space([matrix])

53 # Tuning Parameters

54 COLPERM = Categoricalnorm (['2', '4'], transform="onehot", name="COLPERM")

55 LOOKAHEAD = Integer (5, 20, transform="normalize", name="LOOKAHEAD")

56 nprows = Integer (1, nprocmax, transform="normalize", name="nprows")

57 npernode = Integer (0, int(log2(cores)), transform="normalize", name="
npernode")

58 NSUP = Integer (30, 300, transform="normalize", name="NSUP")

59 NREL = Integer (10, 40, transform="normalize", name="NREL")

60 PS = Space ([COLPERM, LOOKAHEAD, npernode, nprows, NSUP, NREL])
61 # Output

62 runtime = Real (float ("-Inf") , float("Inf"), transform="normalize",
name="r"

63 memory = Real (float("-Inf") , float("Inf"), transform="normalize",
name="memory")

64 0S = Space([runtime, memoryl])

50

66
67
68
69
70
71
72
73
74
75
76

7

78

79
80
81
82

83
84
85
86

87
88
89
90
91
92

93
94

96
97
98
99
100
101
102
103
104
105

107
108
109
110

Constraints

cstl = "NSUP >= NREL"
cst2 = "nodes * 2*xnpernode >= nprows"
constraints = {"cstl" : cstl, "cst2" : cst2}

constants={"nodes" :nodes,"cores":cores}

print (IS, PS, 0S, constraints)

problem = TuningProblem (IS, PS, 0S, objectives, constraints, None, constants)
computer = Computer (nodes = nodes, cores = cores, hosts = None)

""" Set and validate options """
options = Options ()

options['model_restarts'] = 1 # number of GP models being built in one
iteration (only the best model is retained)
options['distributed_memory_parallelism'] = False # True: Use MPI. One MPI per
model start in the modeling phase, one MPI per task in the search phase
options['shared_memory_parallelism'] = False # True: Use threads. One thread per
model start in the modeling phase, one MPI per task in the search phase
options['search_algo']l] = 'nsga2' # multi-objective search algorithm
options['search_pop_size']l = 1000 # Population size in pgymo
options['search_gen'] = 10 # Number of evolution generations in pgymo
options['search_best_N'] = 4 # Maximum number of points selected using a multi-
objective search
options.validate (computer = computer)

""" Intialize the tuner with existing data"""

data = Data(problem) # intialize with empty data, but can also load data from
previous runs

gt = GPTune (problem, computer = computer, data = data, options = optiomns)

""" Building MLA with the given 1list of tasks """

giventask = [["big.rua"]l, ["g4.rua"]l, ["g20.rua"]]

NI = len(giventask)

(data, models,stats) = gt.MLA(NS=NS, NI=NI, Igiven =giventask, NS1 = max (NS
//2,1))

print ("stats: ",stats)

""" Print all task input and parameter samples; search for and print the Pareto
fI‘Ol’lt nnn

for tid in range (NI):
print ("tid: %d"%(tid))

print (" matrix:%s"%(data.I[tid] [0]))
print (" Ps ", data.P[tid])
print (" O0s ", data.0[tid])

ndf, dl, dc, ndr = pg.fast_non_dominated_sorting(data.0[tid])
front = ndf [0]

print('front id: ', front)

fopts = data.0[tid][front]

xopts = [data.P[tid][i] for i in front]

print (' Popts ', xopts)

print (' Oopts ', fopts)

__name__ == "__main__":
main ()

Listing 12: superluMLA_MO.py.

51

(=]

5.3 SuperLU_DIST (RCI)

For the RCI mode, in addition to the GPTune Python driver, the user also needs to provide a
GPTune bash driver. The bash driver will keep querying the GPTune Python driver for next
sampling points, get the sampling points for the dababase file, invoke the application, and write
results back into the dabasefile. This process continues until there is no more sample required.
Following the database format described in Section [3.3.2] “time: null, memory: null” will appear
under “evaluation_result: ”, indicating this is a sample requiring evaluation. As the application is
invoked from bash, it doesn’t need to be compiled using the same software dependence as GPTune,
hence OpenMPI is not required. In addition, the modification in Section [£.1]is also not needed. For
the SuperLU_DIST application, all tuning and task parameters can be passed to the application
via environment variables and command line options, and the objective function evaluations can
be obtained by searching the runlog.

5.3.1 Preparing the meta JSON file

Just like PDGEQRF, a meta JSON file located at ./gptune/meta.json needs to be edited for
SuperLU_DIST.

5.3.2 Muti-objective MLA in RCI mode

The following example performs the same tuning experiment as Section In other words,
the example demonstrates the capability of multi-objective auto-tuning feature of GPTune (in the
RCI mode) with two objectives (runtime and memory of a sparse LU factorization). The example
calls MLA to build a LCM model per objective for the SuperLU_DIST driver pddrive_spawn.c
using three tasks [[“big.rua”], [“gd4.rua”], [“g20.rua”’]]. Note the bash scripts keeps calling su-
perlu_MLA_MO_RCI.py which is similar to the script superlu_MLA_MO.py in Section [5.2] except
that superlu MLA_MO_RCIL.py doesn’t define the objective function (as it’s directly executed in
the bash script), and options['RCI_mode’|=True is required. Note that only the simplified code is
shown here, please refer to GPTune/examples/SuperLU_DIST_RCI/superlu MLA_MO_RCI.py and
GPTune/examples/SuperLU_DIST_RCI/ superlu_MLA_MO_RCI.sh.

start="date +%s”

nrun=20 # number of samples per task

name of your machine, processor model, number of compute nodes, number of cores
per compute node, which are defined in .gptune/meta.json

declare -a machine_info=($(python -c "from gptune import *;

(machine, processor, nodes, cores)=list(GetMachineConfiguration());

print (machine, processor, nodes, cores)"))

machine=${machine_info [0]}

processor=3{machine_info [1]}

nodes=${machine_info [2]}

cores=${machine_info [3]}

objl=time # name of the first objective defined in the python file
obj2=memory # name of the second objective defined in the python file

database="gptune.db/SuperLU_DIST. json" # the phrase SuperLU_DIST should match the
application name defined in .gptune/meta.jason

start the main loop

52

18 more=1
19 while [$more -eq 1]1; do

20
21
22
23
24
25

26
27
28

29
30

31
32
33

34

35
36

37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64

call GPTune and ask for next sample points
python ./superlu_MLA_MO_RCI.py -nrun $nrun

check whether GPTune needs more data

idx=$(jq -r --arg vO0 $objl '.func_eval | map(.evaluation_result[$v0] == null)
| index(true) ' $database)

if [$idx = null];then; more=0; fi;

if so, call the application code (GPTune can requires mutiple samples to be
evaluated)
while [! $idx = null]; do

echo " $idx" # idx indexes the record that has null objective function
values

use jq to retrieve task and tuning parameters

declare -a input_para=($(jq -r --argjson v1 $idx '.func_eval[$vi].
task_parameter' $database | jq -r '.[]1'))

declare -a tuning_para=($(jg -r --argjson vl $idx '.func_evall[$vi].
tuning_parameter' $database | jq -r '.[]1"'))

get the task input parameters, the parameters should follow the sequence
of definition in superlu_MLA_MO_RCI.py
matrix=${input_para[0]}

get the tuning parameters, the parameters should follow the sequence of
definition in superlu_MLA_MO_RCI.py

COLPERM=${tuning_para[0]}

LOOKAHEAD=${tuning_para[1]}

npernode=${tuning_para[2]}

nprows=${tuning_para[3]}

NSUP=${tuning_para [4]}

NREL=${tuning_para [5]}

set environment variables and command line options
npernode=$((2**$npernode))

export OMP_NUM_THREADS=$(($cores / $npernode))

export NREL=$NREL

export NSUP=$NSUP

nproc=3(($nodes*$npernode))

npcols=$(($nproc / $nprows))
RUNDIR="../SuperLU_DIST/superlu_dist/build/EXAMPLE"
INPUTDIR="../SuperLU_DIST/superlu_dist/EXAMPLE/"

run the application, this doesn't have to be openmpi-compiled code

mpirun -n $nproc $RUNDIR/pddrive_spawn -c¢ $npcols -r $nprows -1 $LOOKAHEAD
-p $COLPERM $INPUTDIR/$matrix | tee a.out

get the result (for this example: search the runlog)

result1=$(grep 'Factor time' a.out | grep -Eo '[+-17[0-9]1+([.]J[0-9]1+)7")

result2=$(grep 'Total MEM' a.out | grep -Eo '[+-]17[0-91+([.]J[0-91+)7")

use jq to write the data back to the database file

53

65

66

67
68
69

70
71
72
73
74

jg --arg vO0 $objl --argjson vl $idx --argjson v2 $resultl '.func_eval[$vi].
evaluation_result [$v0]=$v2' $database > tmp.json && mv tmp.json $database

jqg --arg vO0 $obj2 --argjson vl $idx --argjson v2 $result2 '.func_eval[$vi].
evaluation_result [$v0]=$v2' $database > tmp.json && mv tmp.json $database

get the next sample to be evaluated
idx=$(jq -r --arg vO $objl '.func_eval | map(.evaluation_result [$v0] ==
null) | index(true) ' $database)
done
done
end="date +%s”
runtime=$((end-start))
echo "Total tuning time: $runtime"

Listing 13: superlu_MLA_MO_RClI.sh.

6 Numerical experiments

6.1 Parallel speedups of GPTune

Consider the following model problem to be tuned, with the objective function given explicitly as

3
Ydemo(t, T) = exp (— (z + 1)t+1) cos(2mx) Z sin (27rx(t + 2)Z) (7)
i=1

where ¢t and = denote the task and tuning parameters. Note that this function is highly non-convex
and we are interested in finding the minimum for z € [0,1] for multiple tasks t. Fig. [4] plots
Ydemo(t,) versus z for four different values of ¢ and marks the minimum objective function values.
First, we evaluate the parallel performance of the MLA algorithm on a Threadripper 1950X
16-core processor using 6 = 20 tasks. In Fig. [5] we plot the runtime of the modeling and search
phases using 1 and 16 cores, by enabling the GPTune parameter distributed_memory_parallelism.
For simplicity, we set the initial random sample count to NS1 = NS-1 (i.e., only one MLA iteration
is performed). As we increase the number of total samples NS from 10 to 160 (with the LCM kernel
matrix size changing from 200 to 3200), 13X (comparing the two blue curves) and 10X (comparing
the two black curves) speedups are observed for the modeling and sampling phases, respectively.

6.2 Advantage of using performance models

Next, we evaluate the effects of the performance models using the above objective function ygemo(t,).
We test three performance models seperately, 1(t,Z) = Ydemo(t,) (the model is excatly the ob-
jective), Ga(t,) = 10ygemo(t,) (the model output is a factor of 10 larger than the objective), and
U3(t,x) = (14 0.1 X 7(2))Ydemo(t, z) (the model is the objective with random scaling factors). Here
r(z) is a random number drawn from the normal distribution N(0,1). We set NS1 = NS/2 and
use a single task ¢t = 6. Table [2| lists the minimum objective value returned by GPTune’s MLA
algorithm with varying total sample counts NS. Without any performance model, MLA has still
not found the minimum after 640 samples. With the exact model g; (which is not practical), not
surprisingly, at most 20 samples are sufficient to get very close to the minimum: -4.89E-01 (see
Fig. (d)) With the scaled models o and g3, at most 80 samples and 40 samples are sufficient,

54

0.6

0.4

0.2

y(t,x)

0.0

-0.2

0.8

0.6

0.4

0.2

y(t,x)

0.0

-0.2

-0.4

Figure 5: Modeling and search time for 1 and 16 MPIs using the

(@) t=1 08 (b) t=2
0.6
0.4
x
=
= 0.2
0.0
0.2
~x=0.455, y=-0.265 ~x=0.043, y=-0.323
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 4 0.6 0.8 1.0
©t=4 (d) t=6
0.8
0.6
0.4
<
= 0.2
>
0.0 Yo
-0.2
-0.4
+x=0.105, y=-0.410 4x=0.011, y=-0.489
0.0 0.2 04 x 0.6 0.8 1.0 0.0 0.2 04 y 06 0.8 1.0

Figure 4: The objective functions in @) for four task parameter values t.

10°

~=Modeling (16 MPIs)
~7-Modeling (1 MPI)
-e-Search (16 MPIs)
~v-Search (1 MPIs)

40
NS

55

80 160

objective function fgeme-

respectively. In other words, with the coarse performance
fewer samples to build an accurate LCM model.

models, GPTune requires significantly

NS 10 20 40 80 160 320 640
None | -1.40E-01 | -6.06E-02 | -2.93E-02 | -3.79E-01 | -2.69E-01 | -4.25E-01 | -3.83E-01
U1 -4.51E-01 | -4.88E-01 | -4.85E-01 | -4.88E-01 | -4.86E-01 | -4.89E-01 | -4.89E-01
Yo -2.98E-01 | -3.72E-01 | -4.83E-01 | -4.89E-01 | -4.89E-01 | -4.88E-01 | -4.89E-01
U3 -4.52E-01 | -4.52E-01 | 4.88E-01 | -4.77E-01 | -4.89E-01 | -4.89E-01 | -4.89E-01

Table 2: Minimum found by GPTune for the objective fgiemo with and without performance models.

6.3 Efficiency of multi-task learning

Next, we use the ScaLAPACK QR example in Section to compare the performance of the
GPTune MLA algorithms with single-task (6=1) and multi-task (§=20) settings. We use 16 NERSC
Cori nodes assuming a fixed budget of 6 x NS = 400 and NS1 = NS/2. For 6=1, we consider the
task (m = 4674, n = 3608); for =20, we also consider 19 other tasks that are randomly generated
with m,n < 5000 (in practice, one may choose all 20 tasks of interest).

Table [3] shows the runtime breakdown of the single-task and multi-task MLA algorithms. For
this example, the total runtime is dominated by the objective function evaluation. The multi-
task MLA requires less objective evaluation time as it involves 19 other less expensive tasks. In
addition, the multi-task modeling phase is much faster than single-task one as it requires fewer
MLA iterations. More specifically, the multi-task modeling requires 10 iterations with the LCM
matrix dimensions 200, 220, 240, ..., 380 while the single-task modeling requires 200 iterations with
the LCM matrix dimensions 200, 201, 202, ..., 399.

Fig. @] plots the runtime (obtained through runing the application) and corresponding GFlops
using the optimal tuning parameters for all 20 tasks. The red dots correspond to §=20 and the
blue dots correspond to =1. Note that the surfaces are constructed via the Matlab “griddata”
function using the red dots. The multi-task MLA not only achieves a very similar minimum to the
single-task MLA for (m = 4674,n = 3608), but also finds minima for all the other 19 tasks.

6.4 Capability of multi-objective tuning

Finally, we illustrate the multi-objective feature of GPTune for tuning the factorization time and
memory in SuperLU_DIST [16]. As explained in Section we consider six tuning parameters
(COLPERM, LOOKAHEAD, nproc, nprows, NSUP, NREL) and two objectives (time, memory).
As an example, we apply sparse factorization to a matrix “Si2” (single task) from the SuiteSparse
Matrix Collection [4] using 8 NERSC Cori nodes.

total time | objective evaluation | modeling | search
Single-task | 15092.4 14062.3 907.8 120.1
Multi-task 9386.8 9091.4 85.7 208.1

Table 3: Runtime of different phases in the GPTune single-objective and multi-objective MLA with
a total of 400 samples.

56

° 6=20 6=20
o 5=1 . o 5=1 .
0.3 . o
200
» 0.2 d 2 150
o 2 : 2 .
[=] e » [.
3 01) - . o 100 { .
. * = . > .
- * . 50 . fs
5000 . o 5000 .
L
4000 ¢ 4000
2000 2000
m 0 0 n m 0 0 n

Figure 6: (a) Runtime (the objective) and (b) GFlops for 20 tasks of QR factorization after auto-
tuning.

As a reference, we also consider single-objective (time) and (memory). For example, single-
objective (memory) tuning means minimizing the memory usage ignoring the impact on runtime
(as long as the code still runs correctly). Table 4] lists the default and optimal (single-objective)
tuning parameters. The default parameters are those used by SuperLU_DIST without any tuning.
The optimal ones are vastly different from the default ones.

Fig. |7| plots the objective function values (via running the application) on the logarithmic scale
using the default tuning parameters, and those returned by the GPTune single-objective and multi-
objective ML A algorithms. The multi-objective ML A algorithm returns multiple tuning parameter
configurations and their objective function values (in black), among which no data point dominates
over any other in both objectives. In other words, the black dots lie on the Pareto front. We see
that the single-objective minima (in yellow and magenta) lie on or near the Pareto front formed by
the multi-objective minima (in black). Not surprisingly, the default objective values (in cyan) are
far from optimal in either dimension.

COLPERM | LOOKAHEAD | nproc | nprows | NSUP | NREL
Default 4 10 256 16 128 20
Single-objective (time) 2 6 216 149 295 37
Single-objective (memory) 2) 193 20 31 22

Table 4: Default tuning parameters and optimal ones returned by the GPTune single-objective
MLA algorithm.

References

[1] mpidpy. https://pypi.org/project/mpidpy/.
[2] PyGMO. https://esa.github.io/pygmo/.

[3] Scikit-Optimize. https://scikit-optimize.github.iol

57

https://pypi.org/project/mpi4py/
https://esa.github.io/pygmo/
https://scikit-optimize.github.io

2500 Q\ ‘®Pareto op‘tima 1
1600 ® Time optimum
i ® Memory optimum
2 200 y Default
% \
2 400 ’
g \
)
= 200 . |
e X
100 P |
e ---________
0l . e - ‘ - @
0.1 025 05 1 2 4
Time (s)

Figure 7: Logarithmic plots of the optimal objective functions values (factorization time and mem-
ory of SuperLU_DIST with 8 NERSC Cori nodes) found by GPTune using single-objective and

multi-objective tuning. The objective function values using the default tuning parameters are also
plotted.

[4] Suitesparse matrix collection. https://sparse.tamu.edu/.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

. Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. eilly
6] K. Chod M DB: The Definitive Guide: P I and Scalable Data S O’Reill
Media, 2013.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEFE transactions on evolutionary computation, 6(2):182-197, 2002.

[8] R. D. Falgout and U. M. Yang. hypre: A library of high performance preconditioners. In
P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, editors, Computational
Science — ICCS 2002, pages 632—641, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[9] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization
at scale. In J. Dy and A. Krause, editors, Proceedings of the 85th International Conference on

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1437-1446.
PMLR, 10-15 Jul 2018.

[10] P. Frazier. A Tutorial on Bayesian Optimization. https://arxiv.org/abs/1807.02811, 2018.

[11] GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy,
since 2012.

58

https://sparse.tamu.edu/
https://arxiv.org/abs/1807.02811
http://github.com/SheffieldML/GPy

[12]

[13]

Jason Ansel and Shoaib Kamil and Kalyan Veeramachaneni and Jonathan Ragan-Kelley and
Jeffrey Bosboom and Una-May O’Reilly and Saman Amarasinghe. OpenTuner: An Extensible
Framework for Program Autotuning. In International Conference on Parallel Architectures
and Compilation Techniques, Edmonton, Canada, August 2014.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-
box functions. Journal of Global optimization, 13(4):455-492, 1998.

[14] json.org. Json. https://www.json.org/json-en.html.

[15]

[16]

[17]

[18]

[19]

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -
International Conference on Neural Networks, volume 4, pages 1942-1948 vol.4, Nov 1995.

X. S. Li and J. W. Demmel. SuperLU_DIST: a scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Math. Softw., 29(2):110-140, June 2003.

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
MATHEMATICAL PROGRAMMING, 45:503-528, 1989.

W. Sid-lakhdar, M. Aznaveh, X. Li, and J. Demmel. Multitask and Transfer Learning for
Autotuning Exascale Aplications. https://arxiv.org/abs/1908.05792, 2019.

ytopt. ytopt: Machine-learning-based search methods for autotuning. https://github.com/
ytopt-team/ytopt, 2019.

59

https://www.json.org/json-en.html
https://arxiv.org/abs/1908.05792
https://github.com/ytopt-team/ytopt
https://github.com/ytopt-team/ytopt

	Introduction
	Installation
	Installation using example scripts
	Installation from scatch
	Python packages in the requirement file
	GPTune C code
	mpi4py
	scikit-optimize
	autotune
	GPTune Examples (SuperLU_DIST)

	Docker image
	Testing the installation

	GPTune Implementation
	Algorithms
	Single-objective autotuning
	Multi-objective autotuning
	Incorporation of performance models
	Transfer learning

	Parallel implementations
	Dynamic process management
	Objective function evaluation
	Modeling phase of MLA
	Search phase of MLA

	History Database
	Design
	JSON Format

	User Interface
	Modify the application code
	Define the objective function to be minimized
	Define the performance models
	Define the performance models update
	Edit the meta JSON file (from command line)
	Read the meta JSON file
	Define the tuning parameter, task parameter and output spaces
	Define the tuning problem
	Define the computation resource
	Define and validate the options
	Create the data class for storing samples of the spaces
	Initialize GPTune
	Call multi-task learning algorithm (MLA)
	Call transfer learning algorithm (TLA)
	Call opentuner
	Call hpbandster
	Invoke GPTune (from command line): default mode
	Invoke GPTune (from command line): RCI mode
	GPTune options

	Example code
	ScaLAPACK QR
	Preparing the meta JSON file
	MLA
	MLA+TLA

	SuperLU_DIST
	Preparing the meta JSON file
	MLA+TLA
	Muti-objective MLA

	SuperLU_DIST (RCI)
	Preparing the meta JSON file
	Muti-objective MLA in RCI mode

	Numerical experiments
	Parallel speedups of GPTune
	Advantage of using performance models
	Efficiency of multi-task learning
	Capability of multi-objective tuning

